USR-WIF1232 低功耗系列常见问题解答

1.	USR-WIFI232 低功耗系列基本外围电路	2
2.	5V MCU 与 3.3V 模块串口相接电路	3
3.	USR-WIFI232-Sb 天线引出设计参考	3
4.	WIFI 低功耗模块的功耗数据	4
5.	模块不能正确启动	4
6.	按下 nReload 键无法恢复出厂设置	5
7.	模块上电后无法搜索到 SSID	5
8.	如何设置模块(STA 模式)的路由 SSID 和密码	5
9.	搜索到模块的 wifi 网络,无法加入	5
10.	Smartlink 功能怎么使用	5
11.	WPS 怎么使用	6
12.	smartlink 配置不成功	6
13.	wps 配置不成功	6
14.	进入不了 AT 命令	7
15.	如何实现透传模式与命令模式的切换	7
16.	如果通过网页升级固件	8
17.	如何升级定制网页的固件	10
18.	如何实现 PWM/GPIO 控制功能	11
19.	如何设定模块网络连接的参数(Socket A 和 B)	11
20.	如何实现模块连向两个不同的网络端	12
21.	模块在收发时如何区分 Socket A 和 Socket B 的数据	12
22.	如何实现单独对 socket A 发送和接收数据	13
23.	如何实现单独对 socket B 发送和接收数据	13
24.	设置网络参数时,能否用域名替代网址(DNS)	13
25.	如何实现不重启模块切换 TCP 的连接目标并收发数据	14
26.	电脑或手机无法与建立稳定 TCP 连接	14
27.	无法连接到模块的 TCP server	14
28.	TCP 连接不稳定(UDP 问题可适用)	15
29.	TCP 连接超时问题	15
30.	TCP server 死链接处理	15
31.	模块的 HTTP 协议使用方法	15
32.	如何更改模块出厂默认设置	16
33.	设置的参数是否可以掉电存储	16
34.	如何实现 UDP 广播发送	17
35.	低功耗系列模块的最高发送频率是多少	17
36.	模块最大传输速率及传输量是多少	17
37.	路由器密码的 AT 设定(AT+WSKEY)(混合加密方式如何设定)	17
38.	模块传输数据时卡死(数据量大于 100byte)	18

1. USR-WIF1232 低功耗系列基本外围电路

USR-WIFI232 低功耗系列模块的基本电路可见下图 基本要求:

- 1. nReload, nReset, PWR_SW 三个引脚必须要接上拉电阻, 阻值 5~10K 均可。
- 2. 电源输入要有滤波电容,一般为 10uF。电源的电压范围 3.0~3.6V。最小电流要求 300mA。

USR-WIFI232-S 基本电路

USR-WIFI232-T 基本电路

USR-WIFI232-G2 基本电路

2. 5V MCU 与 3. 3V 模块串口相接电路

串口3.3V 转5V推荐电路

3. USR-WIF1232-Sb 天线引出设计参考

天线引脚一般用于引出 SMA 接口,如下图。走线设计要求: 走线要与铺地之间做 50ohm 阻抗匹配。阻抗匹配一般可由 PCB 厂家完成,在制板时表明需求即可。

4. WIFI 低功耗模块的功耗数据

WiFi Mode	Co	ndition	Ave, Power (mW)	Ave. Current (mA)		
	AP Associated	20s After Bootup	87.33	26.54		
	No Data	100s After Associated	43.37	13.18		
		First 20s	113.74	34.57		
074	No AP Associated	First 100s	59.8	18.17		
STA		First 10 minutes	45.11	13.71		
1		Date Rate:1KB/s	47.37	14.39		
1	AP Associated	Date Rate:5KB/s	163.19	49.59		
		Date Rate:10KB/s	166.34	50.55		
	Boot Up	20s After Bootup	177.86	54.06		
	No Data	100s After Bootup	178.86	54.36		
	Data Tranmit	Date Rate:1KB/s	180.53	54.87		
AP		Date Rate:5KB/s	182.23	55.39		
		Date Rate:10KB/s	185.42	56.36		
		Date Rate:10KB/s	101.07	59.09		
		Dual-Direction	191.07	30.00		
	Boot Up	20s After Bootup	167.409	50.73		
	No Data	100s After Bootup	169.191	51.27		
		Date Rate:1KB/s	170.445	51.65		
AP+STA		Date Rate:5KB/s	176.814	53.58		
	Data Tranmit	Data Tranmit Date Rate:10KB/s		55.95		
		Date Rate:10KB/s	106 010	56.64		
		Dual-Direction	100.912	50.04		
Deep Sleep	Not supported yet, will be added future.					

5. 模块不能正确启动

问题现象:模块上电以后, nready 灯不亮或者 nready 引脚为高电平

- 1. 需检查模块供电,供电要求电压达到 3.3±0.3V 的要求,供电电流达到 300mA 以上
- 2. 检查 nReload 及 nReset 引脚是否已接上拉电阻。如果未接,则要求接上上拉电阻

6. 按下 nReload 键无法恢复出厂设置

- 1. 检查 nReload 引脚是否已经接了上拉电阻,如果没有接上拉电阻,单纯的把引脚接地不能做到恢复出厂设置
- 2. 用串口与模块通信,进入 AT 命令模式,查看 AT+RLDEN 是否为 on,如果不为 on 则执 行 AT+RLDEN=on 命令

7. 模块上电后无法搜索到 SSID

检查步骤如下:

- 1. 测试 nReady 引脚是否为低电平,确认模块是否正常启动。如果未正常启动,参考模块 不能正常启动问题解析。
- 2. 通过 nReload 键恢复出厂设置,重新启动模块测试是否可以搜索到 SSID。
- 3. 测试模块串口功能,先设定好串口参数:波特率115200,8 位数据,1 位停止位。通过电脑串口向模块发送+++,查看模块是否正常返回 a。正常返回 a,则进入命令模式查看AT+WMODE 是否为 AP 模式,查看 AT+WAP 设置的 SSID 名称是否正确
- 4. 如果上述步骤均失败,则联系有人工程师处理。

8. 如何设置模块(STA 模式)的路由 SSID 和密码

WIFI232 低功耗系列支持三种路由器 SSID 及密码配置方式:

- 1. 对模块恢复出厂设置,模块出厂默认为 AP 模式,用户可以用手机或电脑连接模块的 wifi, 然后登陆模块内置网页,进行路由器 SSID 和密码配置; WIFI232-S 没有内置网页
- 2. 通过串口用 AT 命令设置,设置命令有 AT+WMODE, AT+WSSSID, AT+WSKEY;
- 3. 通过 smartlink 进行快速配置。光盘资料里提供了使用说明和安卓及 IOS 版本软件。如 果用户需要 smartlink 软件的开发库文件,请与有人的工程师联系
- 4. 通过 WPS 进行快速配置

用户可优先选择 Smartlink 或者 wps 配置 ssid 和密码,如果配置不能成功,再选择网页进行配置。

9. 搜索到模块的 wifi 网络,无法加入

- 1. 首先对于是外置天线的模块,首先需要确认模块的天线是否连接正常
- 2. 确认是否有其他设备接入模块的 WIFI 网络。模块在 AP 模式下最多可接入两个 STA 设备,在 AP+STA 模式下最多可接入一个 STA 设备。

10. Smartlink 功能怎么使用

光盘资料里有 smartlink 的使用说明与软件,请参考

11. WPS 怎么使用

首先按下路由器 wps 按键, 启动路由器 WPS 功能; 然后 WIFI 模块启动 WPS 功能 (通过按键或者); WIFI 模块与路由器会自动进行连接。

12. smartlink 配置不成功

Smartlink 的连接配置不是能 100%成功的。如果 smartlink 配置方法正确,但还是不成功,需选择其他方式设置路由器 ssid 和密码。若 smartlink 或 wps 配置失败,用户可选择网页配置。

- 1. 在一级路由器下配置成功率较高,二级路由器下配置成功率较低;
- 2. 在 WPA2PSK, AES 加密方式下, 配置成功率较高。
- 3. 个别手机因为不支持也会配置失败

下面为测试数据

[[/	加索方式					積英与路面	種斑ら手	模瑛与手							
Į				WI	P		WPAPSK			WPA2P	K		WPAPSK/WF	PA2PSK	器的距离	机距离	机距离
停号	路由器品牌	路由器型号	无	开放式	共享式	TKIP	AES	TKIPAES	TKIP	AES	TKIPAES	TKIP	AES	TKIPAES	; (米)	(米)	(米)
1	TP-LINK	TL-WR340G+	PASS	PASS	PASS	PASS	PASS	1	PASS	PASS	1	1	1	1	5	2	5
2	DLINK	DL-850L	PASS	PASS	PASS	1	1	1	1	1	1	PASS	PASS	5 PASS	5	2	5
3	BUFFALO	WCR-GN	PASS	PASS	PASS	PASS	PASS	1	PASS	PASS	1	1	1	PASS	5	2	5
4	LINKSYS	WRT300N V1	PASS	PASS	PASS	PASS	1	1	1	PASS	1	1	1	PASS	5	2	5
<u>5</u>	LINKSYS	WRT54GS V.4	PASS	1	1	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	5 PASS	5	2	5
6	MERCURY	MW310R	PASS	PASS	PASS	PASS	PASS	1	PASS	PASS	1	PASS	PASS	5 /	5	2	5
7	Tenda	W304R	PASS	PASS	PASS	PASS	PASS	1	PASS	PASS	PASS	PASS	PASS	5 PASS	5	2	5
8	NETGEAR	JWNR2000√2	PASS	1	1	1	1	1	1	PASS	1	1	1	PASS	5	2	5
9	FAST	FWR310	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	5 PASS	5	2	5
10	net. core磊科	NW755	PASS	PASS	PASS	1	PASS	PASS	1	PASS	PASS	1	PASS	5 PASS	5	2	5
11	LB-LINK	BL-841R	PASS	PASS	PASS	PASS	PASS	1	PASS	PASS	PASS	PASS	PASS	5 PASS	5	2	5
12	ASUS	RT-N12E	PASS	1	PASS	PASS	1	1	1	PASS	1	1	1	1	5	2	5
13	FEXUN	FWR-702E	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	1	1	1	5	2	5
14	BELKIN	F7D2301 V1	PASS	1	1	1	1	1	1	PASS	1	1	PASS	5 /	5	2	5
15	BELKIN	F9K1002V5	PASS	PASS	PASS	PASS	1	1	1	PASS	1	1	1	PASS	5	2	5
-											-	-					
使田 TP-I	INK TI -URS400	。 型号路由器完	。 胡以下测定	f													
100110 00 0			Ju-211 0.00														
								+	n密方式								
1					WEP		WP.4	PSK		W	A2PSK		WPAP:	SK/WPA2PSK			
序号	手机品牌	手机型号	无	开放	式 共享	ī式 Ti	IP A	ES TKI	AES	TKIP	AES TKI	PAES	TKIP	AES TK	IPAES		
1	HTC	T329D	PASS	PAS	S PA	SS PA	ASS PA	ISS /	(PASS	PASS	1	1	1	1		
2	HUAWEI	HUAWEIC8813Q	PASS	PAS	S PA	SS P/	ASS PA	ISS /	(PASS	PASS	1	1	1	1		
3	MEIZU, MX	M351	PASS	PAS	S PA	SS P/	ASS PA	ISS /	(PASS	PASS	1	1	1	1		
4	vivo	Y11iT	PASS	FAI	L FA	IL F	IL B	IL)	r	FAIL	FAIL	1	1	1	1		
5	LG	nexus4	PASS	PAS	S PA	SS PA	SS PA	ISS J	r	PASS	PASS	1	1	1	1		
6	LG	nexus5	PASS	PAS	S PA	SS PA	ASS PA	ISS J	r	PASS	PASS	1	1	1	1		
		1				1	1		-						T. T.		

13. wps 配置不成功

同 smartlink 一样, WPS 的配置也不是 100%成功, 如果配置方法正确, 但还是不成功, 请选择其他方式配置连接。

1. WPS 功能需要路由器支持,目前市场上的老式路由器是不支持 wps 功能的.

2. WPS 只支持 WPAPSK 和 WPA2PSK 加密方式

测试结果如下

	<u>表示连接失败</u> 表示连接成功						
	表示开启WPS时,	Router7	支持此项加密				
路由器名称@型号	版本号	信号强度	设定连接次数	路由器加密方式	成功次数	失败次数	备注
		110 2 10/22		WPAPSK	10		
Mercurv MW305R	V1.0.03-2	70%-90%	10	WPA2PSK	10		
				WPAPSK		10	获取到SSID. 但没有获取到密码
LB-LINK BL-841R	V1.0.03-2	70%-90%	10	WPA2PSK	10		
-				WPAPSK			开启WPS时,Router不支持WPAPSK加密
D-Link_DIR-850L	V1.0.03-2	70%-90%	10	WPA2PSK	10		开启WPS时,Router只支持WPA2PSK-AES加密
				WPAPSK		10	
FeiXun_FWR=702E	V1.0.03-2	70%-90%	10	WPA2PSK		10	
				WPAPSK	10		开启WPS时,Router只支持WPAPSK-AES加密
TP-LINK_TL-WR845N	V1.0.03-2	70%-90%	10	WPA2PSK	10		开启WPS时,Router只支持WPA2PSK-AES加密
				WPAPSK (NA)	NA	NA	开启WPS时,Router不支持WPAPSK加密
HUAWEI_HG532d	V1.0.03-2	70%-90%	10	WPA2PSK	10		
				WPAPSK	10		
Cisco_CVR100W	V1.0.03-2	70%-90%	10	WPA2PSK	10		
				WPAPSK	10		
Net-coer_NW755	V1.0.03-2	70%-90%	10	WPA2PSK	10		
				WPAPSK	0	10	
ASUS-RT12E	V1.0.03-2	70%-90%	10	WPA2PSK	0	10	
				WPAPSK (NA)	NA	NA	开启WPS时,Router不支持WPAPSK加密
Belkin F9K100V5	V1.0.03-2	70%-90%	10	WPA2PSK	10		

14. 进入不了 AT 命令

问题现象:输入+++,模块不能返回a;

- 1. 请确认模块是否正常启动,如果指示功能开启, ready 引脚应该为低电平。如果模块为 高电平,请参考模块不能正常启动问题解析。
- 请确认串口参数配置是否正确,如波特率,停止位,数据位,奇偶校验,以及硬件流控 设置,模块串口参数与电脑串口参数应该相同。如果不能确定模块串口参数,则恢复出 厂设置,模块默认出厂参数为:波特率115200,停止位1,数据位8,奇偶校验none, 硬件流控无。
- 3. 如果恢复出厂设置以后依然不能成功,请与有人的工程师联系。

15. 如何实现透传模式与命令模式的切换

用户可以通过串口指令进行工作模式切换,应该也可以通过 AT+TMODE 指令来设定模 块启动时的默认工作模式。

1. 透传模式切换到命令模式:

从透传模式切换到命令模式需要以下两个步骤:

- ▶ 在串口上输入 "+++",模块在收到 "+++" 后会返回一个确认码 "a";
- ▶ 在串口上输入确认码 "a",模块收到确认码后,返回 "+ok"确认,进入命令模式;

<说明>

- ▶ 在输入"+++"和确认码"a"时,串口没有回显,如上图所示。
- ▶ 输入 "+++" 和 "a" 需要在一定时间内完成,以减少正常工作时误进入命令模式的 概率。具体要求如下:

备注: +++和 a 不需要增加回车键; 另外+++与前后字符的时间间隔不能小于 50ms

- 2. 命令模式切换到透传模式
 - 采用 AT+ENTM 指令;

AT+ENTM

- ▶ 功能:进入透传模式;
- ▶ 格式:
 AT+ENTM<CR>
 +ok<CR>< LF ><CR>< LF >
 该命令正确执行后,模块从命令模式切换到透传模式。

16. 如果通过网页升级固件

方式 1: WIFI232-S 模块不支持方式 1

- 1. 登陆模块网页, AP 模式下是 10.10.100.254, STA 模式下是路由器分配的 IP。默认账户 密码为 admin, admin;
- 2. 进入软件升级网页

通讯模块软件升级	
<u>系统信息</u>	
模式设置	
STA设置	
AP设置	
其它设置	
账号管理	
软件升级	
重启	
恢复	

3. 选择升级文件,并点击开始升级

中文 | English

	通讯模块软件升级
系统信息	
模式设置	立 卅五五 上左西 法国际英学生
STA设置	又计正在工程中,用的心马椅
AP设置	
其它设置	
账号管理	
软件升级	
重启	
恢复	

4. 升级成功界面如下

- 1. 登陆模块升级专用界面, AP 模式下是 10.10.100.254/iweb.html, STA 模式下是路由器分 配的地址+/iweb.html,即在地址后面增加/iweb.html。
- 2. 选择第一个 firmware 升级, 添加升级文件, 然后点击 upload 升级

3. 升级完成后界面如下

17. 如何升级定制网页的固件

- 1. 登陆模块升级专用界面, AP 模式下是 10.10.100.254/iweb.html, STA 模式下是路由器分 配的地址+/iweb.html,即在地址后面增加/iweb.html。
- 2. 选择第二个升级选项,添加升级文件,然后点击 upload 升级

3. 升级完成后界面如下

18. 如何实现 PWM/GP10 控制功能

不同型号的模块,可控制的引脚不同,具体可参考用户手册的4.1.3章节和附录B。

1. 首先要切换模块的工作模式为 pwm 工作模式, AT+TMODE=pwm, 需重启生效

2. 切换模块的指示功能, AT+LPTIO 指令, 要重启生效

参考下表格中各模块的设置:

模块与	5功能类别	AT+TMODE	AT+LPTIO
-S	使用 GPIO/PWM	pwm	off
	使用透传、nLink、nReady、WPS	throughput	lpt200
-T	使用 GPIO/PWM	pwm	off
	使用透传、nLink、nReady、WPS	throughput	on
-G2	使用 GPIO/PWM	pwm	lpt200
	使用透传、nLink、nReady、WPS	throughput	off

19. 如何设定模块网络连接的参数(Socket A 和 B)

1. Socket A 的参数设置有两个方法

1) 用 AT 命令设置: AT+NETP,可设置成 TCP server, TCP client, UDP server, UDP client; 18) AT+NETP

```
▶ 功能:设置/查询网络协议参数
  ▶ 格式:
     ◆ 查询
       AT+NETP<CR>
       +ok=<protocol,CS,port,IP><CR>< LF ><CR>< LF >
     ♦ 设置
       AT+NETP=<protocol,CS,port,IP><CR>
       +ok<CR>< LF ><CR>< LF >
  ▶ 参数:
     ♦ Protocol:协议类型,包括
        • TCP

    UDP

     ◆ CS: 网络模式
       ● SERVER: 服务器
        ● CLIENT: 客户端
     ◆ Port:: 协议端口, 10 进制数, 小于是 65535
     ◆ IP: 当模块被设置为"CLIENT"时,服务器的 IP 地址
     如果设置为 UDP, SERVER 工作模式,有 IP 地址、端口保存功能,模块自动保存最新接
     收到的 UDP 数据包 IP 地址和端口,发送数据时发到这个保存的 IP 地址和端口去,模
     块初始化情况下默认发送数据到此指令设置的 IP 地址和端口去。
     如果设置为 UDP, CLIENT 工作模式,没有记忆功能。
    通过网页设置
2)
```

串口参数设置 息	115200
	8
産産の	None
停止位	1
置 CTSRTS	Disable 🗸
里	保存
₩44≫500000000000000000000000000000000000	TCP-Server
	8899
服务器地址	10, 10, 100, 254
TCP超时设置	300

- Socket B 参数设置 通过 AT 指令设置, AT+SOCKB
 - 23) AT+SOCKB
 - ▶ 功能:设置/查询 SOCKB 网络协议参数
 - ▶ 格式:

·	
	◆ 查询
	AT+SOCKB <cr></cr>
	+ok= <protocol,port,ip><cr>< LF ><cr>< LF ></cr></cr></protocol,port,ip>
	◆ 设置
	AT+SOCKB= <protocol, ip="" port,=""><cr></cr></protocol,>
	+ok <cr>< LF ><cr>< LF ></cr></cr>
≻	参数:
	◆ Protocol: 协议类型, 包括
	● TCP, 仅表示 TCP Client
	● UDP, 表示 UDP Client
	● UDPS,表示 UDP Server
	◆ Port:: 协议端口, 10 进制数, 小于是 65535
	◆ IP: 目标 IP 地址, 支持域名
	设置为 UDPS 方式后,模块有 IP 地址、端口保存功能,模块会自动保存最新接收到的
	UDP 数据包的 IP 地址和端口号,发送数据是发送到这个已保存的 IP 地址与端口号。

20. 如何实现模块连向两个不同的网络端

模块初始化情况下,默认发送数据到目标 IP 地址与端口。

模块具有 Socket A 和 B 两个通道,分别设置 A/B 两个通道的参数即可。设置方法参考如何 设置网络连接参数的问题解析。

21. 模块在收发时如何区分 Socket A 和 Socket B 的数据

透传模式下,模块不能区分 Socket A 和 Socket B 的数据,从串口收到的数据会同时向 Socket A 和 Socket B 通道发送出去;同样,无论 Socket A 通道收到的数据还是 Socket B 通道收到的数据,模块都会无区分的发送给串口。

用户如果需要区分 Socket A 和 Socket B 的数据,请参考如何实现单独对 Socket A/B 收发数 据的问题解析

22. 如何实现单独对 socket A 发送和接收数据

单独对 Socket A 进行数据收发,需要在命令模式下进行,通过 AT+SEND 和 AT+RECV 两条 指令进行,两条指令的说明如下:

16) AT+SEND ▶ 功能:在命令模式下发送数据 ▶ 格式: AT+SEND=<data_lenth><CR> +ok<CR>< LF ><CR>< LF > ▶ 参数: ♦ data lenth: 发送数据的长度。范围: 0[~]1000 字节 输入成功后返回一个">",串口等待3s输入,将串口收到数据发送到SOCKB,若两个 字节之间的间隔大于 10ms 则认为输入结束将立刻发送。 17) AT+RECV ▶ 功能:在命令模式下接收数据 ▶ 格式: AT+RECV=<data_lenth><CR> +ok=< data_lenth, data_content><CR>< LF ><CR>< LF > 参数: ◆ data_lenth: 接收到数据的长度。范围: 0~1000 字节 ◆ data_content: 接受到的数据内容。 如果 3s 内没有收到任何数据,则返回+ok=0。

从命令中可以看出,这种使用方式对时间有严格要求。

23. 如何实现单独对 socket B 发送和接收数据

方法与 socket A 类似, 也是需要在命令模式下进行, 通过 AT+SNDB 和 AT+RCVB 指令进行 收发。

```
27) AT+SNDB
  ▶ 功能: 在命令模式下发送数据到 SOCKB
   ▶ 格式:
     AT+SNDB=<data_lenth ><CR>
     +ok<CR>< LF ><CR>< LF >
   ▶ 参数:
      ◆ data_lenth: 发送数据的长度。范围: 1<sup>~</sup>1000 字节
     输入成功后返回一个">",串口等待3s输入,将串口收到数据发送到SOCKB,若两个
     字节之间的间隔大于 10ms 则认为输入结束将立刻发送。
28) AT+RCVB
   ▶ 功能:在命令模式下从 SOCKB 接收数据
   ▶ 格式:
     AT+RCVB=<data_lenth><CR>
      +ok=< data_lenth, data_content><CR>< LF ><CR>< LF >
     参数:
      ◆ data_lenth: 接收到数据的长度。范围: 0~1000 字节
      ◆ data content: 接受到的数据内容。
      如果 3s 内没有收到任何数据,则返回+ok=0。
```

从命令中可以看出,这种使用方式对时间有严格要求。

24. 设置网络参数时,能否用域名替代网址(DNS)

可以使用域名替代网址,比如设定连接百度服务器,服务器网址为 61.135.169.105,端口号 80,则 socket A 设置如下

网址方式: AT+NETP=TCP, client, 80, 61.135.169.105 域名方式: AT+NETP=TCP, client, 80, www.baidu.com

25. 如何实现不重启模块切换 TCP 的连接目标并收发数据

假设原有 TCP client 目标端口和地址为 9000,192.168.1.1, 需要切换到 8899,192.168.1.88; 操 作流程如下

- Step 1.
 enter command mode :Send +++ a

 进入命令模式进行参数更改
- Step 2. AT+TCPDIS=off 关掉原有 TCP 连接
- Step 3. AT+NETP=TCP,client,8899,192.168.1.88
- 更改 TCP client 目标端口和地址 Step 4. AT+TCPDIS=on
 - 打开 TCP 连接
- Step 5.
 AT+TCPLK

 检查 TCP 连接是否已经建立,若未建立连接需等待
- Step 6.
 AT+ENTM

 退出命令模式,回到透传模式
- Step 7. Send data 向目标服务器发送数据
- Step 8.
 Receive data

 接收目标服务器返回的数据
- Step 9. enter command mode :Send +++ a 进入命令模式
- Step 10. AT+TCPDIS=off 关闭 TCP 连接
- Step 11. AT+ENTM 退出命令模式,回到透传模式

26. 电脑或手机无法与建立稳定 TCP 连接

要检查模块的供电电压和电流:电压达到 3.3±0.3V 的要求,供电电流达到 300mA 以上。 若供电不足或者电压不稳,都会导致模块 TCP 连接不稳定

27. 无法连接到模块的 TCP server

- 1. 检查模块是否正确启动,模块的供电是否稳定,参考模块不能正常启动问题解析。若模 块的供电不足,会在 TCP 建立链接时重启,导致建立连接失败;
- 2. 检查目前有多少 TCP client 接入模块的 TCP server,模块最多支持 5 个 TCP 连接
- 3. 通过串口确认模块串口通信是否正常:发送+++是否回复a;
- 4. 若串口正常,则查询模块的 AT+NETP 设置是否为 TCP server, 8899;

28. TCP 连接不稳定(UDP 问题可适用)

模块出现不稳定现象,现象分两类:

模块作为 TCP server, 手机或者电脑作为 TCP client 连接到 TCP server, 一段时间左右, TCP 链接会断开。

模块作为 TCP client, 电脑等作为 TCP server, 经常看到 TCP client 接入、断开, 无法稳定保持连接。

原因:

可能1:

网络连接不稳定现象一般是由供电不稳定造成的,如电压不稳或者电流不足。较多出现 在用户采用 USB 供电的时候,建议用户检查或更换电压。参考模块不能正常启动的问 题解析。此原因通用适用于 UDP 传输不稳定问题。

可能2:

模块的超时时间设定, socket A 是 AT+TCPTO 指令或者网页查看; socket B 是 AT+TCPTOB 指令。TCP 连接断开的时间频率和超时时间类似,可能是超时时间导致, 请更改重新测试

29. TCP 连接超时问题

TCP 超时时间的计时,是计算的没有接收到数据的时间,请在使用中注意该问题。

30. TCP server 死链接处理

模块做 TCP server 时,如果 TCP client 没能正常断开链接,会导致模块 TCP server 出现死链接。模块去除 TCP 死链接的方式是超时机制,即在一定时间没有数据交互时就断开所以 TCP 链接。

31. 模块的 HTTP 协议使用方法

首先要保证模块已在 STA 模式下连接路由器并可以访问互联网;
假设要访问的链接地址如下: http://community.thingspeak.com/blog/news/
通过 AT+HTTPURL 设定 host: http://community.thingspeak.com; 80
命令格式: AT+HTTPURL=http://community.thingspeak.com, 80
通过 AT+HTTPPH 设定 local: /blog/news/
命令格式: AT+HTTPPH=/blog/news/
通过 AT+HTTPCN 设定 connection 方式: keep-alive
命令格式: AT+HTTPCN= keep-alive
通过 AT+HTTPUA 设定 user-agent: 看用户需求,这儿设成 www.usr.cn
命令格式: AT+HTTPUA=www.usr.cn
通过 AT+HTTPTP 设定请求方式: GET 或者 POST
命令格式: AT+HTTPTP=GET

通过 AT+HTTPDT 发送请求或者数据: 第一种: 使用 GET, 因此不需要发送数据 命令格式: AT+HTTPDT 第二种,使用 POST,需要发送数据,假设发送数据为 123 则命令格式: AT+HTTPDT=123 操作后的截图如下 AT+HTTPURL=http://community.thingspeak.com,80 +ok AT+HTTPPH=/blog/news/ +ok AT+HTTPUA=www.usr.cn +ok AT+HTTPTP=GET +ok AT+HTTPDT HTTP/1.1 200 OK Date: Mon, 20 Jan 2014 00:53:24 GMT Server: Apache Last-Modified: Fri, 26 Apr 2013 00:51:54 GMT Accept-Ranges: bytes Content-Length: 76 Vary: Accept-Encoding Keep-Alive: timeout=5, max=100 Connection: Keep-Alive Content-Type: text/html <!-- pageok --> <!-- managed by puppet --> <html> pageok </html> +ok

32. 如何更改模块出厂默认设置

用户通过 AT+CFGTF 指令,可以将当前的参数设置保存为出厂默认设置。 设定出厂默认参数设置的流程如下

- 1. 通过 AT 命令设定模块参数。需要把所有参数都要设置一遍,避免出现遗漏,导致出厂 设置错误。
- 2. 执行 AT+CFGTF 指令,保存当前设置为出厂默认设置。

另外,有人还可以提供设置工具,用于一次性设置出厂设置。

33. 设置的参数是否可以掉电存储

对于模块设定的参数,是可以掉电存储的,不需要再次设置;但是恢复出厂设置后,仍然会 丢失,恢复到出厂默认的参数。如果用户需要设定出厂默认的参数,请参考如果更改模块出 厂默认设置的问题解析。

34. 如何实现 UDP 广播发送

模块的 socket A 和 B 两个通道均可支持 UDP 传输。在 UDP client 模式下,可以发送 UDP 广播。发送广播的方式是将 UDP client 的目标地址设为 255.比如要在 192.168.1.*网段发送广播,端口号是 9000。设置 AT 指令如下:

Socket A 是: AT+NETP=UDP, client, 9000, 192.168.1.255

Socket B 是: AT+SOCKB=UDP, client, 9000, 192.168.1.255

35. 低功耗系列模块的最高发送频率是多少

模块最高的发送频率是 200ms 每次。即两次发送的时间间隔至少要大于 200ms。否则会出 现连包的现象。

36. 模块最大传输速率及传输量是多少

模块的传输速率与波特率和网络状态有关。如果网络状态良好的话,传输速度受到串口波特率的限制。常用波特率是115200,速率为10k/s左右。最大波特率为460800,速率为46k/s左右。

模块没有数据传输量的限制,可以一直在传输。不过,因为串口和网络数据传输速度的不一致,可能会出现数据拥堵的现象,导致丢包,数据的缓冲 buffer 是 1K,所以一般建议用户 一次性发送数据不要大于 1K;数据量偏大时有丢包的概率。如果用户需要经常传输大批量 数据,建议选用 WIFI232-A/B/C 系列模块。

37. 路由器密码的 AT 设定(AT+WSKEY)(混合加密方式如何设定)

因为在设置路由器密码是,AT 指令有固定的格式要求: 30) AT+WSKEY ▶ 功能: 设置/查询 STA 的加密参数; ≻ 格式: ◆ 查询 AT+WSKEY<CR> +ok=<auth, encry, key><CR>< LF ><CR>< LF > ◆ 设置 AT+ WSKEY=< auth, encry, key><CR> +ok<CR>< LF ><CR>< LF > 参数: ♦ auth: 认证模式, 包括 • OPEN SHARED • WPAPSK WPA2PSK ♦ encry: 加密算法,包括 ● NONE: "auth=OPEN"时有效 ● WEP-H: "auth=OPEN" 或 "SHARED"时有效, HEX 密码形式 ● WEP-A: "auth=OPEN" 或 "SHARED"时有效, ASCII 密码形式 • TKIP: "auth= WPAPSK 或 WPA2PSK" 时有效 "auth= WPAPSK 或 WPA2PSK" 时有效 • AES: ◆ key: 密码,当 encry=WEP-H 时,密码为 16 进制数,10 位或 26 位;当 encry=WEP-A 时, 密码为 ASCII 码, 5 位或 13 位; 其他为 ASCII 码, 小于 64 位, 大于 8 位。

- WEP 密码分为 16 进制和 Ascii 码两种格式,请根据密码内容确定选择是用 WEP-H 还是用 WEP-A;选择根据如下:
 WEP支持 64 位和128 位加密,对于 64 位加密,加密密钥为 10 个十六进制字符(0-9 和 A-F)或 5 个 ASCII 字符,对于 128 位加密,加密密钥为 26 个十六进制字符或 13 个 ASCII 字符
- 2. WPAPSK/WPA2PSK 混合加密方式选用 WPA2PSK
- 3. TKIP/AES 混合加密选用 AES

38. 模块传输数据时卡死(数据量大于100byte)

模块在进行数据传输时,如果传输的数据中存在连续 100 个数据 0,就会造成模块的 wifi 芯片死机的现象。这个属于 wifi 芯片自身机制的问题,需要用户采用一定方法规避,避免 出现连续 100 个数据 0 的问题。