

PLCNET-S7

西门子 SIMATIC® S7 系列 PLC 以太网通讯处理器

使用手册

目录

1.产品选型	3
2.功能应用	4
3.PLCNET 安装、诊断	5
3.1 安装	5
3.2 诊断	5
4.PLCNET 参数设定	6
4.1Web 页面的登录、查看	6
4.1.1 串行总线接口参数	7
4.1.2 以太网接口参数	8
4.1.3 通讯诊断	g
4.2 PLCNET-S7 配置软件使用	10
4.2.1 搜索设备	10
4.2.2 设置 IP 地址	10
4.2.3 修改设备参数	11
5.编程调试	21
5.1 驱动安装	21
5.2MicroWIN 编程调试	22
5.2.1 通过 PLCNET 编程驱动	22
5.2.2 通过西门子以太网驱动	27
6.SCADA 以太网通讯	31
6.1WINCC 通讯	31
6.2 组态王通讯	33
6.2.1 采用西门子 S7TCP 驱动	33
6.2.2 采用 KEPServer OPC 驱动	36
6.3 力控通讯	37
7.OPC 通讯	39
7.1.添加通道	39
7.2 添加设备	42
7.3 添加标签	44
7.4 变量测试	44
8.触摸屏以太网通讯	45
9.产品技术指标	48
10 联系我们	ΔC

1.产品选型

PLCNET-S7 产品主分为两个系列: PLCNET-S7200 直通型、PLCNET-S7200 桥接型。

- PLCNET-S7200 直通型: 适用于西门子 S7200 系列、SMART 系列等 PLC 控制系统的的以太网通讯; 其 X2 的扩展接口可以连接支持多主站通讯的触摸屏(西门子品牌、PROFACE 品牌)和通讯电缆(西门子原装)。
- PLCNET-S7200 桥接型:适用于西门子 S7200 系列、SMART 系列等 PLC 控制系统的的以太网通讯;其 X2 的扩展接口可以连接不支持多主站通讯的触摸屏(国产触摸屏品牌:威纶通、步科、昆仑通泰、海泰克等)。

2.功能应用

功能一: 编程调试

PLCNET-S7 模块支持对 PLC 控制系统的编程调试(MicroWIN、STEP7、博图软件)。详见《<u>第五章:编程调</u>试》。

功能二: SCADA 以太网通讯

PLCNET-S7 模块支持和市面上几乎所有的 SCADA 监控组态软件以太网通讯,例如: WINCC、组态王、MCGS、力控、杰控、易控、INTOUCH、IFIX、LABVIEW 等。详见《第六章: SCADA 以太网通讯》

功能三: OPC 通讯

PLCNET-S7 模块支持和市面上主流的 OPC Server 以太网通讯,例如: KEPWARE OPC、PC ACCESS OPC 等。另外,基于 PLCNETS7 协议,我们开发了完全免费的 PLCNETS7 OPC 服务器,最多可连接 1023 台设备,适用于大规模的设备联网项目的数据采集。详见《第七章: OPC 通讯》

功能四: 触摸屏以太网通讯

PLCNET-S7 模块支持和市面上主流的触摸屏以太网通讯,例如:西门子 KTP/TP 系列、西门子 SmartIE 系列 连 S7300、威纶通、步科、昆仑通态等。详见《第八章:触摸屏以太网通讯》。

功能五: ModbusTCP 通讯

PLCNET-S7 模块内部集成了 ModbusTCP 服务器功能,上位机软件(ModusTCP 客户端)可直接按照地址映射表去访问 PLC 控制系统的内部寄存器地址的数据,地址映射表可以使用默认的也可以自由定义映射关系,使得通讯变得更加灵活。详见《<u>第九章:ModbusTCP</u> 通讯》。

功能六: 高级语言编程

PLCNET-S7 模块提供开放的以太网协议 (PLCNETS7 协议) 供工程师开发通讯程序软件使用。详见 《<u>第十章:</u>PLCNETS7 协议规范》。

3.PLCNET 安装、诊断

3.1 安装

- 1、将西门子 PLC 控制器上电;
- 2、将 PLCNET-S7 模块插入到 PLC 的 DB9 通讯口,并拧紧螺栓加以固定;
- 3、用一根网线连接 PLCNET-S7 模块和电脑。

3.2 诊断

- 1、PLCNET-S7 模块的红色电源指示灯 Pwr 灯将立即常亮;
- 2、PLCNET-S7 模块的绿色总线指示灯 Bus 灯应在 3 秒内常亮, Bus 灯常亮表明 PLCNET-S7 模块已自动锁定了 PLC 通讯口的波特率,此状态为未通讯时的正常状态,也是正常通讯的前提;
- 3、PLCNET-S7 模块的 RJ45 端口的绿色 Link 灯应常亮,Link 灯常亮表明 PLCNET 已经建立了以太网连接。 注意:

当 PLCNET-S7 模块插在 PLC 的 PPI 通讯口,并且处于未通讯的状态时发现 Bus 灯非【常亮】状态(即无法锁定 PLC 通讯口的波特率),一般为以下情况:

PLC 的通讯口被设置成了自由口通讯,解决方法:将 PLC 的拨码开关打到 STOP 状态,再次尝试连接。

当 PLCNET-S7 模块插在 PLC 的 PROFIBUS 通讯口,并且处于未通讯的状态时发现 Bus 灯非【常亮】状态(即无法锁定 PLC 通讯口的波特率),一般为以下情况:

- 1、新的 PLC 的 PROFIBUS 口默认是未启用状态,解决方法:通过 MPI 通讯口对 PROFIBUS 通讯口进行配置并且下载硬件配置:
- 2、PROFIBUS 通讯口的波特率高于 6M bps,解决方法: PLCNET-S7 模块在 PROFIBUS 通讯口下支持的最高波特率为 6M bps,将 PROFIBUS 通讯口的波特率设置为 6M bps 以下。

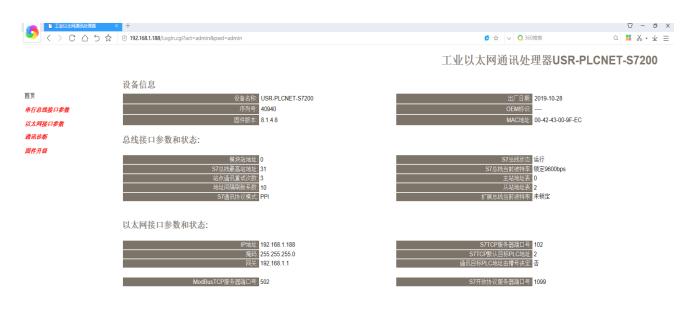
4.PLCNET 参数设定

当需要对 PLCNET-S7 的参数进行修改(比如修改 IP 地址)时,可以通过<mark>登录 Web 网页或者使用 PLCNET 较</mark>件来实现。

一般情况下,只要保证 PLCNET-S7 和电脑的 IP 地址在同一网段,其它参数无需设置,就可以正常通讯了。

4.1Web 页面的登录、查看

1.将电脑的本地网卡的 IP 设置成 192.168.1.100。如下图所示:



2. 电脑上运行 Internet Explorer 浏览器,在地址栏输入: 192.168.1.188(这是 PLCNET-S7 的出厂 IP 地址),然后按回车键,浏览器应能显示 PLCNET-S7 的内部 Web 网页,如下图所示:

3. 登录后显示的首页,如下图所示:

设备基本信息:由出厂时预置。

- S7 总线接口参数:显示当前设置的 S7 接口各项参数。
- S7 总线接口状态:包括当前 PLCNET-S7 所处的 S7 总线协议模式、S7 总线状态、主从站地址表及自动波特率的执行情况。

以太网接口参数:显示当前设置的以太网接口参数。

4.1.1 串行总线接口参数

站地址: PLCNET-S7 的自身站地址, 默认为 0。这个地址不能和 S7 总线上其他设备的站地址相同, 必须唯一。

S7 总线最高站地址: 指定 S7 总线上可能的最高站地址, 默认为 31; PLCNET-S7 会根据这个参数 去搜寻网络上可能存在的 PLC 设备。

站点通讯重试次数: 当通讯发生错误时 PLCNET-S7 进行重试的次数,默认为 3。

地址间隔刷新系数:这个系数影响 PLCNET-S7 查找其他设备的速度,默认为 10。

S7 总线协议模式:设置 PLCNET-S7 运行的协议模式:

当 PLCNET 插在 S7200 的 PPI 通讯口上时:选择 PPI 模式;

S7 总线波特率自动检测:默认为【开启】,【开启】状态下无需设置【S7 总线——>波特率】,将自动识别 PLC 通讯口的波特率。

扩展总线接口波特率自动检测:默认为【开启】,【开启】状态下无需设置【扩展总线(HMI端)——>波特率】,将自动识别 HMI 通讯口的波特率,仅对桥接型模块有意义。

高级设置:

S7 总线——>波特率: 只当【S7 总线波特率自动检测】状态为【关闭】时,需要根据连接的 PLC 通讯口的波特率手动设置该参数。

扩展总线(HM 端)——>波特率:只当【扩展总线接口波特率自动检测】状态为【关闭】时,需要根据连接的 HMI 通讯口的波特率手动设置该参数,仅对桥接型模块有意义。

当更改以上参数后请点击[确认]按钮,PLCNET-S7 将复位并重新启动。请回到地址栏重新刷新首页并查看 S7 接口参数设置是否有效。

4.1.2 以太网接口参数

设置 PLCNET-S7 的 IP 地址、掩码和网关(即路由器的地址);

S7TCP 默认目标 PLC 地址: 默认为 2,这个参数只有当组态王、WINCC 等组态软件采用 S7TCP 驱动和 PLC 通讯时,需要设置这个参数与 PLC 的站地址保持一致。

通讯目标 PLC 地址由槽号决定:通过插槽号决定与不同 PLC 通讯,默认为【关闭】,即采用【S7TCP默认目标 PLC 地址】参数通讯。

高级设置:

S7TCP 服务器端口号: 默认为 102, 建议默认。

ModbusTCP 端口号:默认为502,建议默认。

PLCNETS7 协议端口号:默认为 1099,建议默认。

当更改以上参数后请点击[确认]按钮,PLCNET-S7 将复位并重新启动。如改了 IP 地址,请回到地址栏重新键入新的 IP 地址刷新首页并查看以太网接口参数设置是否有效。

4.1.3 通讯诊断

S7 总线——>通讯请求总数: 所有发送到 PLC 的通讯请求数目;

正确响应次数: PLC 正确响应这些请求的数目:

错误响应次数: PLC 发出的错误响应数目;

扩展总线——>通讯请求总数: HMI 发送到 PLCNET-S7 的通讯请求数目:

正确响应次数: PLCNET-S7 正确响应这些请求的数目;

错误响应次数: PLCNET-S7 发出的错误响应数目;

以太网(TCP/IP)——>通讯请求总数:以太网客户机发送到 PLCNET-S7 的通讯请求数目;

正确响应次数: PLCNET-S7 正确响应这些请求的数目;

错误响应次数: PLCNET-S7 发出的错误响应数目:

TCP 连接数: 所有以太网客户机连接数;

运行时间: PLCNET-S7 上电后的运行时间;

上次内部故障: PLCNET-S7 的系统故障,正常情况下不应该产生故障;

4.2 PLCNET-S7 配置软件使用

4.2.1 搜索设备

运行 PLCNET-S7 软件,如下图:

1.搜索设备之前请选择好连接 PLCNET-S7 模块的【网络接口】;

如果电脑和模块是通过网线连接的,请选择【本地连接】;

2.点击【快速搜索】按钮,可以把网络上的 PLCNET-S7 模块搜索出来,此时我们可以看到模块的一些基本信息,包括:序列号、出厂日期、固件版本、IP 地址、子网掩码、网关等信息。

4.2.2 设置 IP 地址

首先,我们需要修改 PLCNET-S7 模块的 IP 地址来保证与电脑的 Ip 地址在同一网段。

点击【设置 IP 地址】按钮,在弹出的对话框中,对【IP 地址】、【子网掩码】、【网关】进行修改,修改完成后,点击【设置】按钮进行参数保存。

4.2.3 修改设备参数

正常情况下,不需要对 PLCNET-S7 模块进行参数的修改就已经可以正常通讯了。

4.2.3.1 S7 总线接口参数配置

1.点击【修改设备参数】按钮,在弹出的对话框中,可以查看【S7 总线接口参数配置】——【S7 总线接口】 参数,如果修改了其中的参数,需要点击【下载参数】按钮才能生效。

NET 站地址: PLCNET-S7 的自身站地址,默认为 0。这个地址不能和 S7 总线上其他设备的站地址相同,必须唯一。

S7 总线最高站地址: 指定 S7 总线上可能的最高站地址, 默认为 31; PLCNET-S7 会根据这个参数去搜寻网络上可能存在的 PLC 设备。

站点通讯重试次数: 当通讯发生错误时 PLCNET-S7 进行重试的次数, 默认为 3。

地址间隔刷新系数: 这个系数影响 PLCNET-S7 查找其他设备的速度, 默认为 10。

S7 总线协议模式:设置 PLCNET-S7 运行的协议模式:

当 PLCNET 插在 \$7200 的 PPI 通讯口上时: 选择 PPI 模式;

- S7 总线通讯波特率: 推荐选择自动识别,如果你知道 PLC 通讯口的波特率,也可以手动设定波特率。
- 2.点击【修改设备参数】按钮,在弹出的对话框中,可以查看【S7总线接口参数配置】——【扩展总线接口】参数,如果修改了其中的参数,需要点击【下载参数】按钮才能生效。

波特率:推荐选择自动识别,如果你知道触摸屏通讯口的波特率,也可以手动设定波特率。 注意:此界面配置只对桥接型模块有效。

4.2.3.2 以太网接口参数配置

1.点击【修改设备参数】按钮,在弹出的对话框中,可以查看【以太网接口参数配置】——【以太网接口参数】参数,如果修改了其中的参数,需要点击【下载参数】按钮才能生效。

IP 地址、子网掩码、网关地址分别为 PLCNET-S7 的 ip 地址、子网掩码、网关。

2.点击【修改设备参数】按钮,在弹出的对话框中,可以查看【以太网接口参数配置】——【S7TCP 服务器】 参数,如果修改了其中的参数,需要点击【下载参数】按钮才能生效。

S7TCP 服务器端口号: 默认为 102, 建议默认。

S7TCP 默认目标 PLC 地址: 默认为 2,这个参数只有当组态王、WINCC 等组态软件采用 S7TCP 驱动和 PLC 通讯时,需要设置这个参数与 PLC 的站地址保持一致。

通讯目标 PLC 地址由槽号决定:通过插槽号决定与不同 PLC 通讯,默认为【关闭】,即采用【S7TCP 默认目标 PLC 地址】参数通讯。

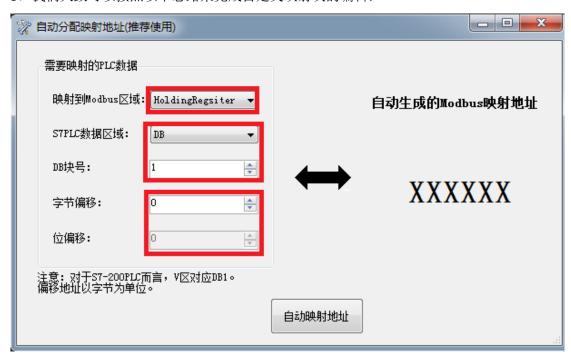
4.2.3.3Modbus 映射表

点击【修改设备参数】按钮,在弹出的对话框中,可以查看【Modbus 映射表】参数,如果修改了其中的 参数,需要点击【下载参数】按钮才能生效。

1.PLCNET-S7 内置了默认地址映射表,映射规则为全区域映射(0~65535):

- 线圈 Coil (000001~) 映射为 PLC 的 Q 区;
- 输入 Input (100001~) 映射为 PLC 的 I 区;
- 输入寄存器 InputRegsiter 映射为 PLC 的 M 区;
- 保持寄存器 HoldingRegsiter 映射为 PLC 的 DB1 数据块(S7200 的 V 区)。

2.除了默认的地址映射外,我们也可以自定义地址映射关系,我们推荐使用【自动分配映射关系(推荐)】 来配置地址映射表,在此之前,我们需要手动删除默认的地址映射表。


1) 选中映射块,点击【删除映射块】来删除映射块:

2)点击【自动分配映射地址(推荐)】,添加自定义映射块。

3) 我们大致可以按照以下思路来完成自定义映射块的编辑:

◆ 根据你所要读写的 PLC 数据是以字为单位还是以位为单位,访问类型为只读还是读写来选择【映射到 Modbus 区域】:

Wiodbus E. A.			
Modbus 区域	数据类型	功能号	最大指令数
Coil	位	FC1(读线圈)	S7-200: 119
000001~			S7-300: 784

		FC5(写线圈)	1
Input	位	FC2(读输入)	S7-200: 119
100001~			S7-300: 784
InputRegsiter	字(2字节)	FC4(读输入寄存器)	S7-200: 16
300001~			S7-300: 111
HoldingRegsiter	字 (2 字节)	FC3(读保持寄存器)	111
400001~		FC16(写保持寄存器)	
		FC6(写单一保持寄存器)	1

◆ 选择你所要读写的 PLC 的数据区域及地址偏移。

举例:读写 DB1.DBW0

举例: 读写 M0.0

举例: <mark>只读 DB2.DBX10.0</mark>

举例: 只读 DB3.DBW100

4)映射表编辑完成后,可以通过地址查询确定对应关系,比如要查询 DB1.DBW0 对应的 modbus 地址:点击【映射地址查询】,按如下设置,点击【查询】按钮,可以查询到对应的 Modbus 映射地址。

4.2.3.4 设备运行诊断

点击【设备运行诊断】按钮,可以查看 PLCNET-S7 当前的运行情况: S7Bus 接口信息、以太网接口信息、S7 总线地址表等。

S7 总线地址表:

- M: 表示主站 (Master)
- S: 表示从站(Slave)
- S7 总线地址表显示当前 S7 总线上的站点信息: 0表示 PLCNET-S7 的站地址; 2表示 S7200 的站地址。

4.2.3.5 通讯测试

点击【通讯测试】按钮,在弹出的对话框中,依次点击【发送】,把【循环】打上勾,点击【发送】。

这里我们读取了 PLC 的 MB0~MB19 共 20 个字节的数据,如果通讯正常,则会返回 MB0~MB19 共 20 个字节的数据(最直观的方法: 如果接收次数和正确次数一直是累加的话,表面通讯正常),可以借此来判断 PLCNET-S7 模块、PLC、上位机之间的以太网连接是否正常。

5.编程调试

5.1 驱动安装

安装编程驱动之前,计算机必须首先安装过西门子 MicroWIN 软件、STEP7 软件或者博途软件,控制面板中应有"设置 PG/PC 接口"图标,如下图:

设置 PG/PC 接口 (32 位)

如果计算机的操作系统是 32 位的,请安装 32 位编程驱动;如果计算机的操作系统是 64 位的,请安装 64 位编程驱动。安装的时候,请右击驱动程序,以【管理员身份运行】安装,安装完成后,请重启计算机。驱动安装程序如下图:

■ NetS7PD8801_setup_x86.exe ■ NetS7PD8802_setup_x64.exe

1.1 MB 663.8 KB 应用程序 1.3 MB 821.3 KB 应用程序

2017-09-19 18:18 2017-09-19 17:06

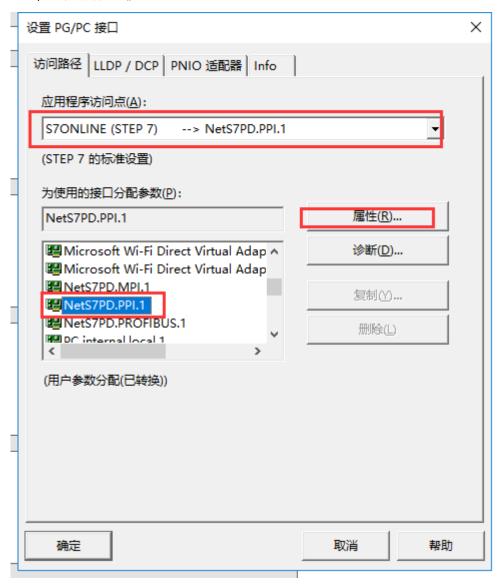
【NETS7PD8801_setup_x86】为 32 位编程驱动;

【NETS7PD8802 setup x64】为 64 位编程驱动。

重启计算机之后,进入控制面板,打开【设置 PG/PC 接口】,可以看到新增的通讯接口:

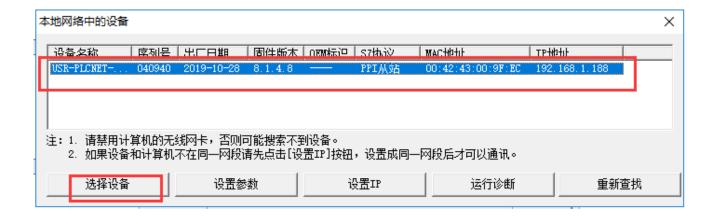
5.2MicroWIN 编程调试

PLCNET-S7 模块对 MicroWIN 编程调试有两种方法:通过 NETS7 编程驱动,或者通过西门子的以太网驱动。


5.2.1 通过 PLCNET 编程驱动

1.打开 MicroWIN 软件,点击左侧导航栏的【设置 PG/PC 接口】图标;

2.在【为使用的接口分配参数】中选择 PNETS7PD.PPI.1,确保【应用程序访问点】为 Micro/WIN —>NETS7PD.PPI.1,点击【属性】按钮;

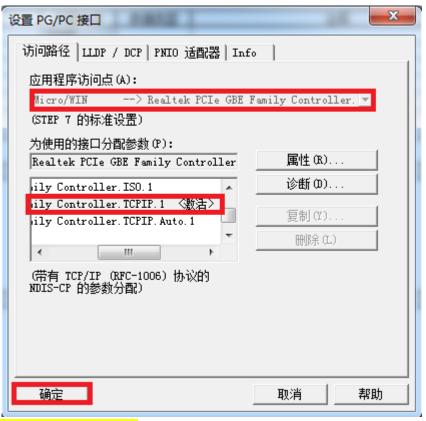


3.如果知道 PLCNET 的 IP 地址,在【PLCNET 模块的 IP 地址或域名】中直接输入 PLCNET 的 IP 地址,点击【确定】按钮;

如果不知道 PLCNET 的 IP 地址,可以点击【查找本地的 PLCNET 模块】,选择要连接的 PLCNET 模块,点击【选择设备】按钮。

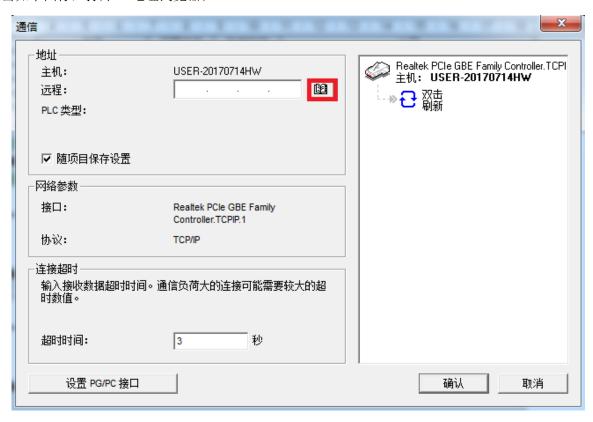
4.点击左侧导航栏的【通信】图标;

5. 鼠标双击【双击刷新】图标,选中刷新到的 PLC,点击【确认】按钮。

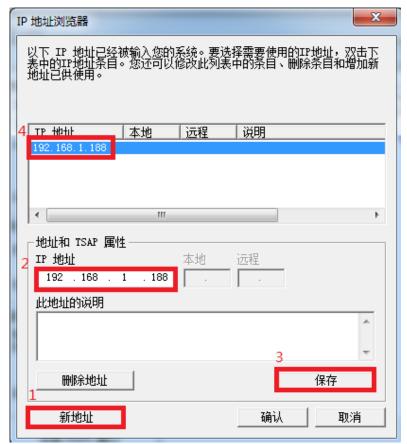

5.2.2 通过西门子以太网驱动

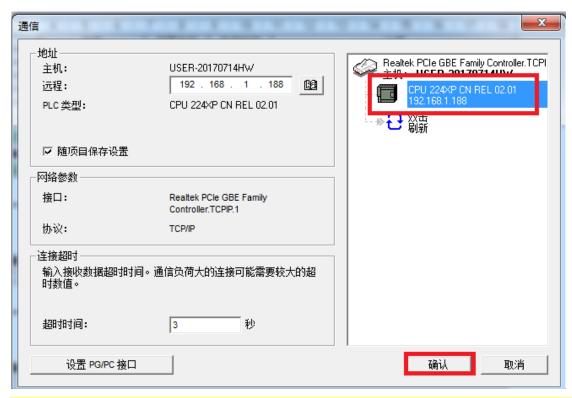
1.打开 MicroWIN 软件,点击左侧导航栏的【设置 PG/PC 接口】图标;

2.在【为使用的接口分配参数】中选择计算机的网卡,确保【应用程序访问点】为 Micro/WIN—>计算机网卡,点击【确定】按钮;


注意:请选择后缀为 TCPIP 的计算机网卡

3. 点击左侧导航栏的【通信】:




4.点击如下图标, 打开 IP 地址浏览器;

5.点击【新地址】按钮,在【IP 地址】中输入 PLCNET 的 IP 地址,点击【保存】按钮,双击保存后的 IP 地址:

6. 鼠标双击【双击刷新】图标,选中刷新到的 PLC,点击【确认】按钮。

注意:通过西门子的以太网驱动时请设置【S7TCP 默认目标 PLC 地址】为当前 PLC 通讯口的站地址。

6.SCADA 以太网通讯

6.1WINCC 通讯

西门子 S7-200 采用 PLCNET-S7200 连接 WINCC,可以采用: WINCC 的 TCP 驱动。

1、打开 WINCC 软件,新建一个项目,右击【变量管理】,选择【添加新的驱动程序】,选择【SIMATIC S7 Protocol Suite.chn】文件;

2、右击【TCP/IP】连接,选择【新驱动程序的连接】,定义一个连接名,点击【属性】,在【IP地址】处填入 PLCNET-S7200 的 IP地址,点击【确定】;

3、右击工程栏【变量管理】组下的【TCP/IP】连接,选择【系统参数】,在【单位】选项中的【逻辑设备名称(D)】中选择"TCP/IP-> (计算机网卡)"。

注意:

不要选带 auto 的网卡。

6.2 组态王通讯

西门子 S7-200 通过 PLCNET-S7200 连接组态王,可以采用: 西门子 S7TCP 驱动或 KEPSERVER-OPC。

6.2.1 采用西门子 S7TCP 驱动

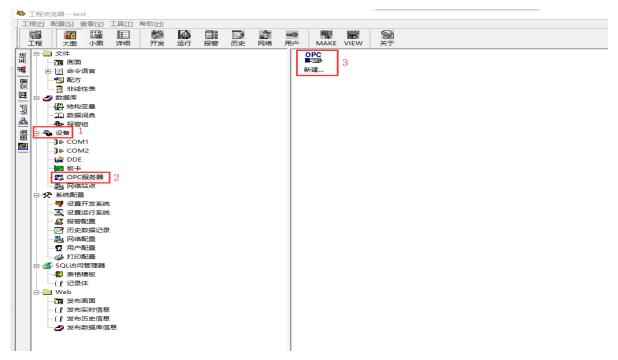
1、打开组态王软件,鼠标单击 ^{并*} 打开组态王工程浏览器——设备(COM1),双击右侧【新建】;

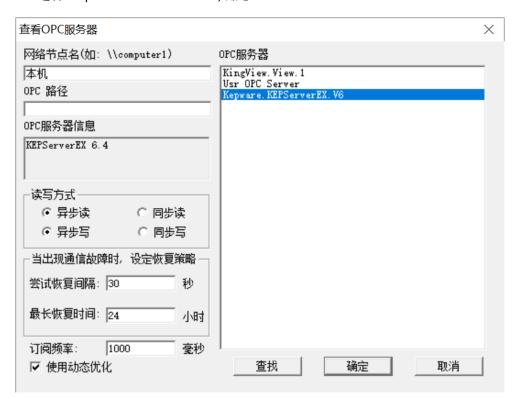
2、打开 PLC 分组, 然后打开西门子分组, 选择 S7-200 系列(TCP)下的 TCP 驱动

3、填入设备名称,点击【下一步】;

1、填入 PLCNET-S7200 的 IP 地址: CPU 槽号 (默认为 0); 例如 192.168.1.188:0;

5、根据向导默认参数,点击【下一步】;

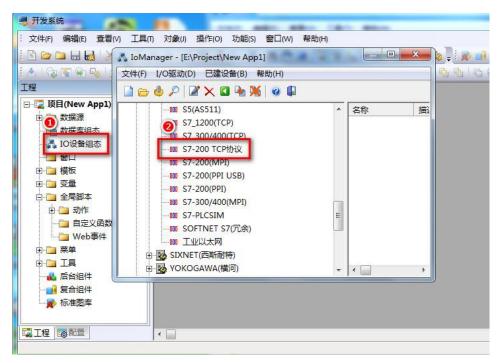

6、完成参数设置。



6.2.2 采用 KEPServer OPC 驱动

1、打开组态王软件,鼠标单击 帮 打开组态王工程浏览器——设备 (OPC 服务器),双击右侧"新建"

2、选择"Kepware.KEPServerEX.V6",确定



6.3 力控通讯

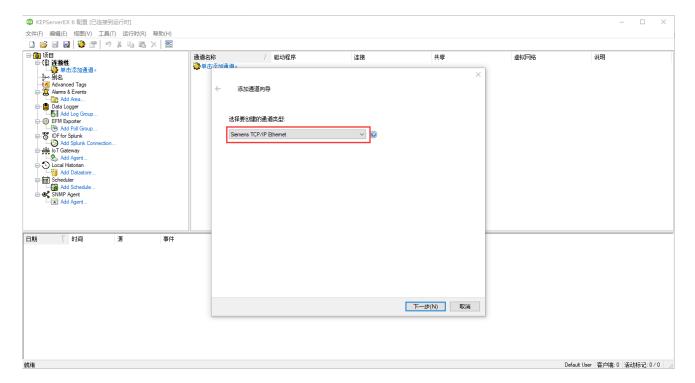
西门子 S7-200 通过 PLCNET-S7200 连接 ForceControl,可以采用:西门子 S7TCP 驱动。

1、打开力控开发系统——IO 设备组态,选择【PLC-SIEMENS(西门子)—S7-200 TCP 协议】;

2、填入设备名称,点击【下一步】;

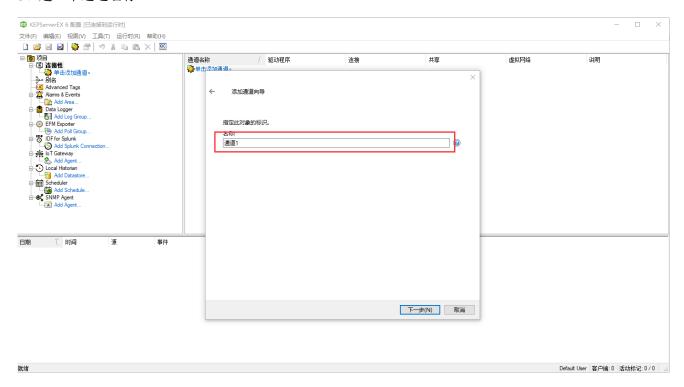
3、填入 PLCNET-S7200 的 IP 地址,端口(默认为 102),完成设置。

7.OPC 通讯

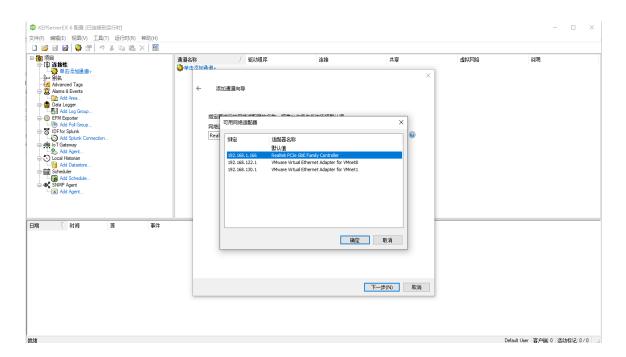

西门子 S7-200 通过 PLCNET-S7200 连接 KepWare OPC,可以采用西门子 S7TCP 驱动。

7.1.添加通道

1、打开 Kepware OPC Configuration,增加一个通道;

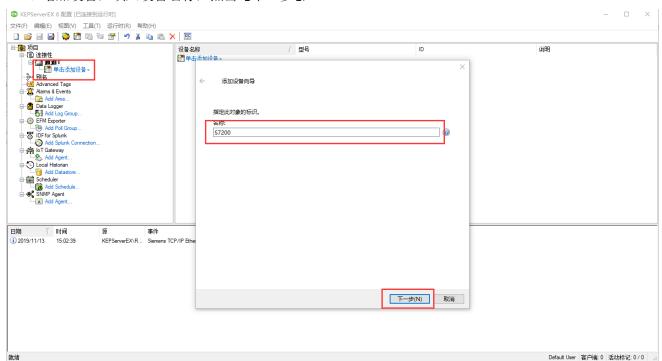


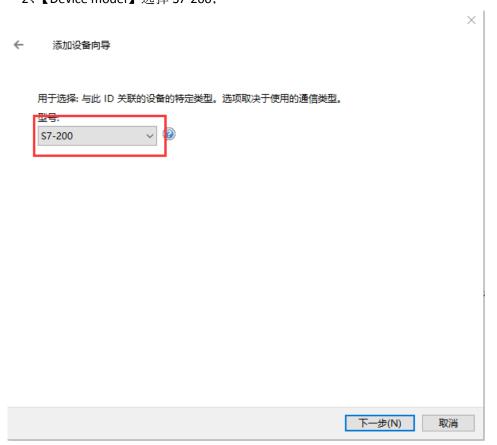
2、选择通道类型,选择【Siemens TCP/IP Ethernet】驱动,点击【下一步】;



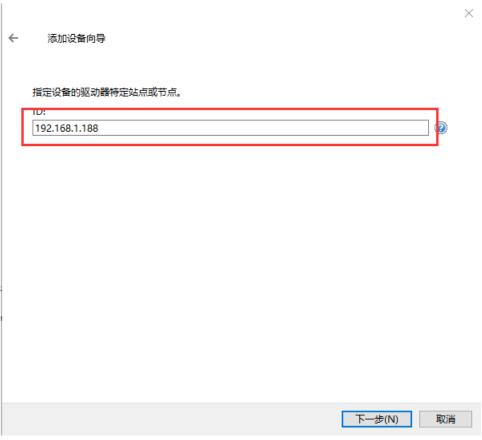
3、起一个通道名称

4、【Network Adapter】选择计算机网卡;

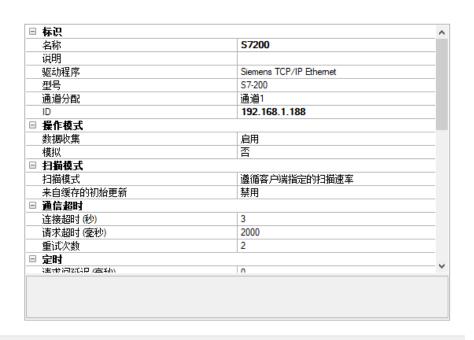

4、根据需要选择模式(可默认),依照向导完成通道参数设置;



7.2 添加设备


1、增加设备,填入设备名称,点击【下一步】;

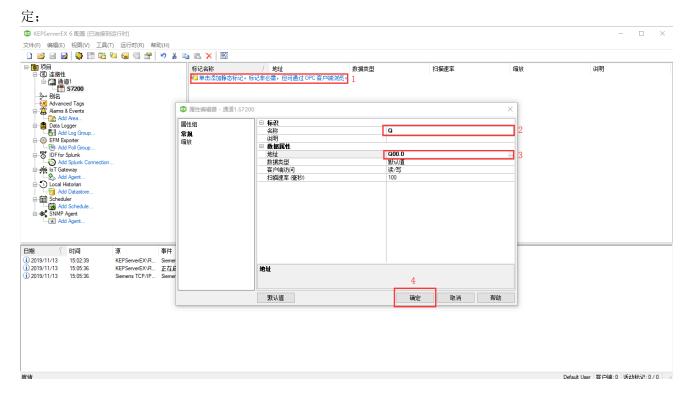
2、【Device model】选择 S7-200;



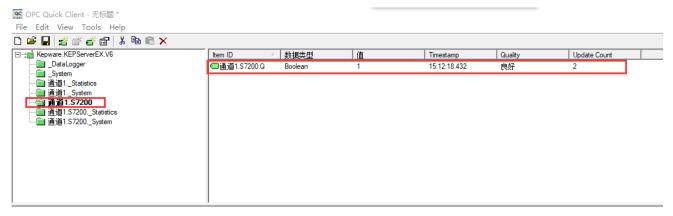
3、【Device ID】填入 PLCNET-S7200 的 IP 地址,点击【下一步】;

4、依照向导完成设置。

← 添加设备向导

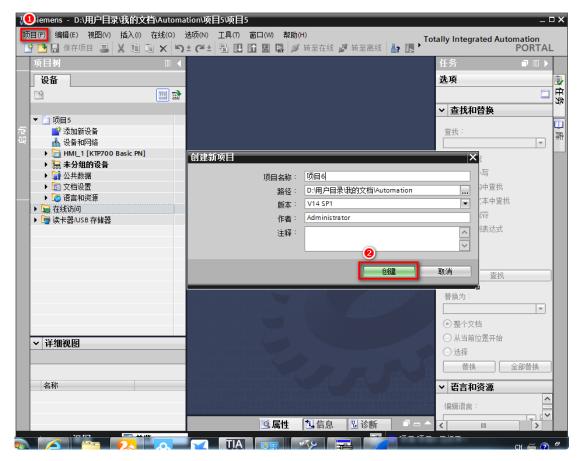

完成(F)

取消


7.3 添加标签

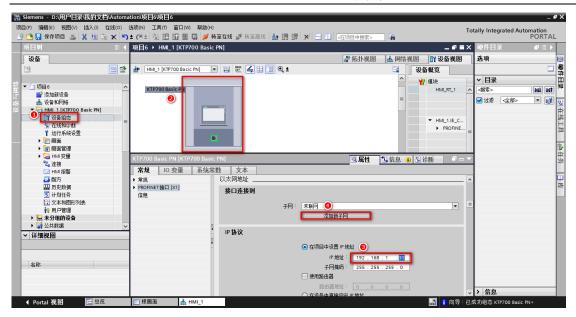
1、按下图单击框①,弹出 Tag Properties 窗口,在框②设置变量,点击框③的——选择变量,然后点击确

7.4 变量测试


1、在 OPC 客户端验证数据通讯。

8.触摸屏以太网通讯

PLCNET-S7 模块可以和西门子的 KTP/TP 系列触摸屏以太网通讯,这里以 KTP700 为例介绍参数设置。1、新建项目;


2、添加触摸屏设备;

3、给触摸屏分配 IP 地址(必须和 PLCNET 模块的 IP 地址在同一网段);

4、新建【连接】,在【通信驱动程序】中选择 SIMATIC S7 200/300/400, 在【HMI 设备】-【地址】填入触摸屏的 IP 地址, 在【PLC】-【地址】填入 PLCNET 模块的 IP 地址。

使用手册 2018-9-7

9.产品技术指标

PLCNET-S7 模块满足以下技术指标:

供电电源	24VDC±20%/100mA
工作环境	0-60 度, 90%湿度, 无结露
安装	西门子 S7PLC DB9 通讯口直接安装
尺寸	65 x 33 x 17 mm
DB9 通讯口	TIA/EIA RS-485 兼容,ESD: ±15KV,最多 32 个节点
DB9 通讯协议	西门子 S7 总线多主站协议,支持 PPI、MPI 从站、MPI 主从站和 PROFIBUS,支持波特率 (bps): 9600、19200、45450、93750、187500、500K、1.5M、3M、6M
RJ45 以太网	IEEE 802.3 兼容,10/100M BT,1500Vrms,带 Link/Active 指示灯,支持 Auto-MDIX
以太网协议	S7TCP,PLCNETS7,ModbusTCP,32 个 TCP/IP 连接
RoHS 生产	是
抗震动	4.5mm/30Hz/10Min
ESD	6KV
出厂老化	60 度老化箱运行 168 小时,通断电 50000 万次
通讯稳定性	持续一个月和 PLC 不间断通讯测试,1亿3千万次通讯0错误

使用手册 2018-9-7

10.联系我们

名公 司:济南有人物联网技术有限公司

地 址: 山东省济南市高新区新泺大街 1166 号奥盛大厦 1号楼 11层

网 址: http://www.usr.cn

用户支持中心: http://h.usr.cn

邮 箱: sales@usr.cn

电 话: 4000-255-652 或者 0531-88826739

有人定位: 万物互联使能者

有人愿景: 成为工业物联网领域的生态型企业

有人使命:连接价值价值连接

价 值 观: 天道酬勤 厚德载物 共同成长 积极感恩

产品理念: 简单 可靠 价格合理

企业文化: 有人在认真做事