

CAN 转 4G DTU USR-CANET200-C1

说明书

联网找有人, 靠谱

可信赖的智慧工业物联网伙伴

产品特点

- 全工业设计,金属外壳;
- 支持水平桌面放置、挂壁式安装方式;
- 宽电压 DC 9-36V 输入,具备电源反向保护;
- 静电、浪涌、电快速脉冲群等多重防护;
- 内置软硬件看门狗,故障自检测、自修复,确保系统稳定。
- 网络优, 搭载 Cat-1 网络, 10Mbps 下载, 5Mbps 上传, 满足 80%的数据传输应用场景;
- 延迟低, 4G 网络承载, 毫秒级延时体验;
- 移动、联通、电信 LTE Cat.1 全网通;
- 覆盖广,基于现有运营商 4G 网络,稳定性高;
- 无需特殊卡、无需特殊套餐,常规卡即可使用;
- 支持网络透传功能, CAN 口/串口数据直接传到网络端,简单可靠;
- 支持 FD、回环、标准三种 CAN 工作模式,支持帧 ID 过滤,满足多种应用场景;
- 支持 KEEP-ALIVE 机制,可以保活连接,增强连接稳定性;
- 支持注册包,心跳包数据;
- 支持基站定位;
- 多种参数设置方式:网络、串口 AT 指令和电脑端设置软件配置;
- 具有安全机制,可设置指令模式登录密码;
- 支持 CAN 和 RS485 两种接口,使用更方便;
- 多种指示灯,状态判断方便准确。

目 录

1.	. 产品概述	5
	1.1. 产品简介	5
	1.2. 硬件接口	5
	1.2.1. 状态指示灯	5
	1.3. 尺寸描述	5
	1.4. 基本参数	6
2.	产品功能	7
	2.1. CAN 功能	7
	2.1.1. CAN 功能概述	7
	2.1.2. CAN 打包机制	8
	2.1.3. CAN ID 过滤	9
	2.1.4. CAN 数据透传协议	9
	2.2. Socket 透传功能	11
	2.2.1. TCP Client 模式特性	11
	2.2.2. UDP Client 模式特性	12
	2.2.3. 心跳包功能	13
	2.2.4. 注册包功能	14
	2.3. 串口功能	15
	2.3.1. 串口基本参数	15
	2.3.2. 串口成帧机制	16
	2.4. 特色功能	17
	2.4.1. CAN 转 RS485 功能	17
	2.4.2. 串口转网络	18
	2.4.3. 网络转串口	18
	2.4.4. 安全机制	19
	2.4.5. 基站定位	20
	2.4.6. 固件升级	20
	2.4.7. 恢复默认设置	
	2.4.8. 无数据重启机制	21
3.	参数设置	
	3.1. 串口配置	22
	3.1.1. 设置软件说明	22
	3.2. AT 指令设置	22
	3.3. 串口 AT 指令	23
	3.4. 网络 AT 指令	24
	3.5. AT 指令集	25
4.	联系方式	28

USR-CANET200-C1 说明书

5.	免责声明	29
6.	更新历史	30

1. 产品概述

1.1. 产品简介

USR-CANET200-C1 是有人物联网推出的首款 Cat-1 CAN 协议 DTU。该产品具备高速率、低延迟的特点,支持三大运营商 Cat-1 网络接入;产品采用工业级设计标准,内置独立硬件看门狗,同时支持 FOTA 远程升级,为高可靠性提供保证;宽电压端子供电,CAN 和RS485 两种标准端子接口,客户使用更方便,适用性更强;产品自带挂耳,安装方便。

1.2. 硬件接口

USR-CANET200-C1 设计上保持了有人产品风格,贴膜依然采用绿色和黑色搭配的醒目设计,各种接口标识清晰可见,指示灯更加丰富,可以准确的判断 DTU 的工作状态。各种硬件接口如下图所示。

1.2.1. 状态指示灯

USR-CANET200-C1 一共 4 个状态指示灯,各个指示灯的指示内容以及指示形式如下表:

指示灯名称	指示功能	状态
POWER	电源指示灯	红灯,上电亮起,断电熄灭
WORK	工作指示灯	正常工作,闪烁
NET	网络连接指示灯	网络连接指示灯,网络连接后,根据连接制式点亮
LINKA	Socket A 连接指示灯	连接成功亮起,无连接熄灭

表 1指示灯说明

1.3. 尺寸描述

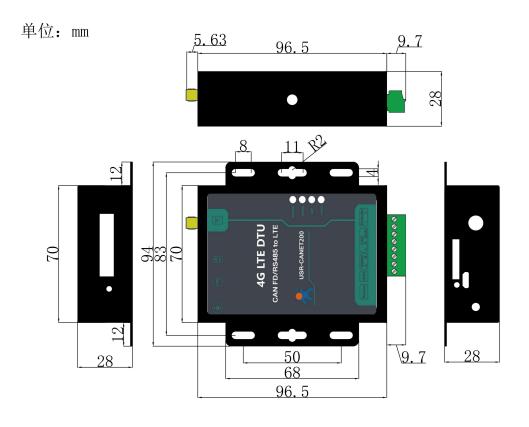


图 1产品尺寸图

1.4. 基本参数

表 2 产品基本参数

参 数	Ţ		描述			
			支持移动 2G/LTE Cat-1			
		CANET200-C1	支持联通 2G/LTE Cat-1			
			支持电信 LTE Cat-1			
		电源	供电范围 9V~36V ,推荐值 12V/1A			
		工作电流	满载平均 56.36mA-88.38mA,最大:88.38mA(12V)			
			POWER: 电源指示灯,上电后长亮			
		d N - 	WORK: 工作状态指示灯, 正常 1s 闪烁一次			
基	本参数	状态指示灯	NET: 网络连接指示灯,网络连接后,根据连接制式点亮			
			LINKA:Socket A 连接状态指示灯,连接后亮起			
		SIM/USIM 卡	3V/1.8V SIM 卡槽, 2FF 规格(传统大卡)			
	_	USB 接口	从机,MicroUSB 口,USB 2.0 High speed			
		UART 接口	支持 CAN 和 RS485,端子接口,波特率 1200~460.8Kbps			
		Reload 按键	按下 Reload 按键 3~15s,然后松开,一键恢复出厂设置			
		天线接口	SMA 外螺内孔			
ДЬ	·形尺寸	尺寸(mm)	96.5*94.0*28.0mm(L*W*H,不含导轨件及天线座)			
21	ניאורי	重量 (克)	270g			
温	温度范围	工作温度	-35°C~ +75°C			
71111		存储温度	-40°C~ +125°C			
湿	度范围	工作湿度	5%~95% (无凝露)			
技	技术规范	TDD-LTE	3GPP Release 13 CAT1 下行 7.5 Mbps,上行 1 Mbps			
		FDD-LTE	3GPP Release 13 CAT1 下行 10 Mbps,上行 5 Mbps			
频	页 段 -	TDD-LTE	Band 34/38/39/40/41			
		FDD-LTE	Band 1/3/5/8			
		TDD-LTE	+23dBm(Power class 3)			
功	率等级	Band 34/38/39/40/41				
		FDD-LTE	+23dBm(Power class 3)			
		Band 1/3/5/8	网络沃住塔士			
		工作模式	网络透传模式 ATL 令令结构			
<i>t.l-</i> 2	7.// / Τἡ 살ヒ	设置指令 网络协议	AT+命令结构 TCD/LIDD/DNS			
*	?件功能	网络协议 Socket 数量	TCP/UDP/DNS 1			
		用户配置	串口 AT 指令、网络 AT 指令			
焅	色功能	ガア配量 域名解析 DNS	支持			
1র্থ	□ 4) HC	~w.⊓ \ulli\ulli\ulli\ulli\ulli\ulli\ulli\ull	עו			

简单透传方式	支持 TCP Client /UDP Client
心跳数据包	支持自定义心跳包/SN 心跳包/ICCID 心跳包/IMEI 心跳包
注册包机制	支持自定义注册包/SN 注册包/ICCID 注册包/IMEI 注册包
FOTA 升级	支持
基站定位	支持
安全机制	支持

2. 产品功能

2.1. CAN 功能

2.1.1. CAN 功能概述

CAN 支持 3 种工作模式, FD 模式, 标准模式, 回环模式。标准模式下, 波特率可配 125kbps - 1Mbps 间任意值, FD 模式和回环模式下, 仲裁波特率可配 125kbps - 1Mbps 间任意值, 数据波特率可配为 1Mbps - 5Mbps。

FD 模式和标准模式为常用模式,可以正常的接收和发送数据可根据连接的 CAN 设备类型自由选择。回环模式用于测试,该模式下发送的数据只会被自身接收到。不会下发到 CAN 总线。FD 模式相较于标准模式有两个特点:

- (1) FD 模式下报文发送具有两种波特率仲裁波特率和数据波特率。标准模式下仅有一种波特率。
- (2) FD 模式下拥有更大的数据载荷,一条报文最大可以传输 64 字节的数据。而标准模式下,一条报文的最大可以传输 8 字节数据。设置软件设置:

图 2 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+CAN=1000000,1000000,CANFD,NONE,0,0	设置 CAN 工作模式为 FD 模式、仲裁波特率 1000000、数据波特率
'		1000000、不启用 ID 过滤
2	AT+S	发送保存指令,模块会自动保存和重启。重启后连接网络

2.1.2. CAN 打包机制

由于网络端的数据都是以数据帧为单位进行数据传输的,因此需要将 CAN 的数据组成帧数据发送到网络端,这样可以更加高效快捷的传输数据。CANET200 能够根据打包时间和打包帧数对 CAN 接收到的数据进行打包。

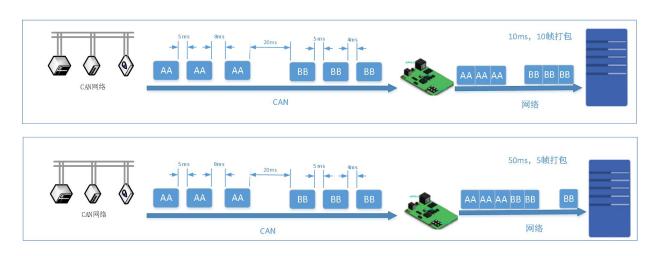


图 3 CAN 打包机制

CAN 打包机制依据打包时间和打包长度, 当两者满足任意一条则打包发送。

打包时间:默认为 5 ms,可设置,范围为: 1~255。 打包长度:默认为 20 帧,可设置,范围为: 1~50。

设置软件设置:

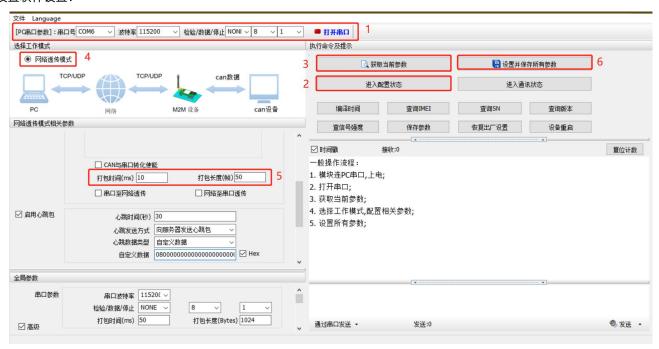


图 4 设置软件示意图

指令设置:

序号	指令设置	设置内容		
1	AT+CANFT=10	设置 CAN 打包时间为 10ms		
2	AT+CANFL=50	设置 CAN 打包长度为 50 帧		
3	AT+S 发送保存指令,模块会自动保存和重启。重启后连接网络			

2.1.3. CAN ID 过滤

CAN ID 过滤模式一共有四种模式可选:

扩展帧接收范围:此模式下,模块仅接收范围内的扩展帧 ID,标准帧被过滤掉

扩展帧不接收范围:设定扩展帧过滤的范围,仅过滤掉 ID 范围内的扩展帧,标准帧完全接收

标准帧接收范围: 仅接收范围内的标准帧 ID, 扩展帧被过滤掉

标准帧不接收范围:设定标准帧过滤的范围,仅过滤掉 ID 范围内的标准帧,扩展帧完全接收

注:

标准帧范围:由于 CAN FD 支持范围大于标准 CAN,故该范围为: 0x0 - 0xFFF。

扩展帧范围: 0x0 - 0x1FFFFFFF。

设置软件设置:

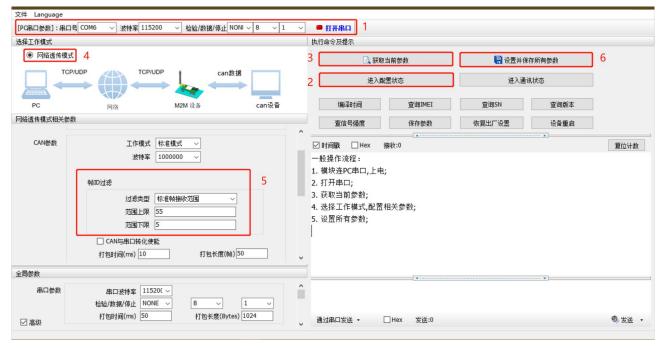
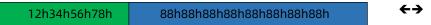


图 5 设置软件示意图


指令设置:

序	号	指令设置 设置内容		
			设置 CAN 工作模式为标准模式、仲裁波特率 1000000、数据波特率	
1	1	AT+CAN=1000000,1000000,BASIC,STDRECV,5,55	1000000、启用 ID 过滤,过滤类型为标准接收范围,范围上限 55,	
			范围下限 5 (十进制)	
3	3	AT+S	发送保存指令,模块会自动保存和重启。重启后连接网络	

2.1.4. CAN 数据透传协议

字节转换:

CAN 数据和以太网数据互转时将 CAN ID 和数据转换为 13 字节的网络数据

联网找有人,靠谱

88h	12h	34h	56h	78h	88h							
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

帧信息:

88h

帧信息:长度1字节,用于标识帧信息:帧类型、帧长度。

Bit7 Bit0 Bit0 B1 B0 B1 B0

FF: 标准帧和扩展帧的标识位, 1 为扩展帧, 0 为标准帧

RTR: 远程帧和数据帧的标识位, 1 为远程帧, 0 为数据帧

保留: 保留位需填 0,不可置 1。

B3~B0: DLC 数据长度位,标识该 CAN 帧的数据长度。DLC 值参考下表。

CAN FD 因为最大可以传输 64 字节的数据, 所以 DLC 和传统报文的有些区别, 具体如下表所示:

DLC	CAN	CAN FD	
0	0	0	
1	1	1	
2	2	2	
3	3	3	
4	4	4	
5	5	5	
6	6	6	
7	7	7	

DLC	CAN	CAN FD
8	8	8
9	8	12
10	8	16
11	8	20
12	8	24
13	8	32
14	8	48
15	8	64

帧 ID:

帧 ID: 长度 4 字节; 高位在前, 低位在后。

12h	34h	56h	78h
-----	-----	-----	-----

扩展帧 ID: 0x12345678

00h	00h	01h	23h
-----	-----	-----	-----

此 ID 既可以表示扩展帧 ID 也可以表示标准帧 ID

扩展帧 ID: 0x00000123

标准帧 ID: 0x0123

扩展帧和标准帧 ID 通过帧信息区分

帧数据:

数据,长度8字节,有效长度通过帧信息的B3~B0位来表示,不足补00h

| 88h |
|-----|-----|-----|-----|-----|-----|-----|
| | | | | | | |

例:

CAN 到以太网:

CAN 发送

帧格式:扩展帧帧类型:数据帧

➤ ID : 12345678

▶ 数据 : 12 34 56 78 00

以太网接收: 85 12 34 56 78 12 34 56 78 00 00 00 00

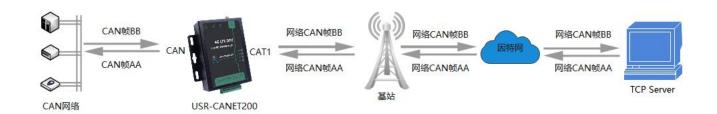
> 0x85 表示帧格式为扩展帧, 帧类型为数据帧, 数据长度为 5

▶ 后四位表示 CAN ID 为 12345678

▶ 最后 8 位为数据区,有效长度为 5,其余位补齐 0

以太网到 CAN:

▶ 以太网发送: 05 00 00 06 78 12 34 56 78 00 00 00 00


> 0x05 表示帧格式为标准帧, 帧类型为数据帧, 数据长度为 5

▶ 00 00 06 78 表示 ID 为 0678

▶ 12 34 56 78 00 00 00 00 为数据区,有效长度为 5

2.2. Socket 透传功能

2.2.1. TCP Client 模式特性

图 6 TCP Client 模式

- 1) TCP Client 为 TCP 网络服务提供客户端连接。主动发起连接并连接服务器,用于实现 CAN 数据和服务器数据的交互。根据 TCP 协议的相关规定,TCP Client 是有连接和断开的区别,从而保证数据的可靠交换。通常用于设备与服务器之间的数据交互,是最常用的联网通信方式。
- 2) 本模式具备主动识别连接异常的功能,当连接建立后,会有以大约 60s 的间隔发送的 KeepAlive 保活探查包,如果连接有异常中断等情况,则会被立即检测到,并促使 CANET200 断开原先的连接并重连。

设置软件设置:

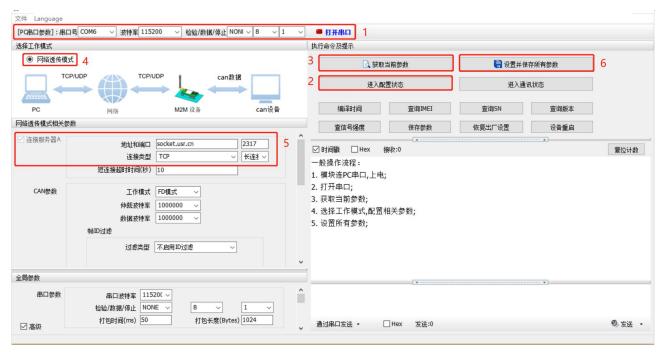


图 7 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+WKMOD=NET	设置工作模式为网络透传模式
2 47.506	AT+SOCKA=TCP,socket.usr.cn,2317	设置 Socket A 为 TCP 客户端,服务器地址为 socket.usr.cn,端口
		号为 2317。
4	AT+S	发送保存指令,模块会自动保存和重启。重启后连接网络

2.2.2. UDP Client 模式特性



图 8 UDP Client 模式

- 1) 本工作模式从属于 UDP 协议。
- 2) UDP Client 一种无连接的传输协议,提供面向事务的简单不可靠信息传送服务,没有连接的建立和断开,只需要指定 IP 和端口即可将数据发向对方。通常用于对丢包率没有要求,数据包小且发送频率较快,并且数据要传向指定的 IP 的数据传输场景。
- 3) UDP Client 模式下,CANET200 只会与目标 IP 的目标端口通讯,如果数据不是来自这个通道,则数据不会被 CANET200 接收。
- 4) 在 UDP 模式下时网络端发送数据包大小建议不超过 650 字节,即 50 个 CAN 帧。每秒发送 UDP 包数量小于 4000 个 CAN 帧设置软件设置:

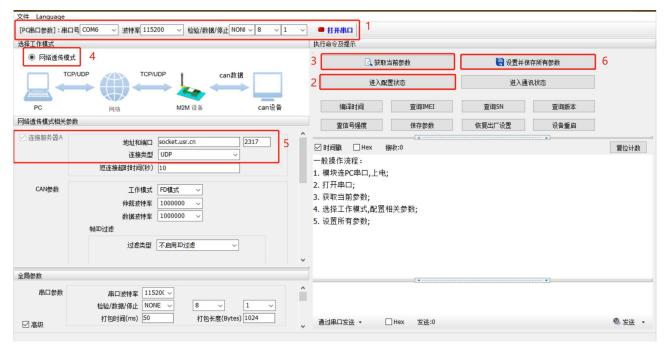


图 9 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+WKMOD=NET	设置工作模式为网络透传模式
3	3 AT+SOCKA=UDP,socket.usr.cn,2317	设置 Socket A 为 UDP 客户端,服务器地址为 socket.usr.cn,端口
		号为 2317。
4	AT+S	发送保存指令,模块会自动保存和重启。重启后连接网络

2.2.3. 心跳包功能

在网络透传模式下,用户可以选择让 DTU 发送心跳包以实现特定的需求。

心跳包发送方式:心跳包可以向网络端发送,也可以向串口设备端发送。

- ▶ 向服务器发送:用于保持连接稳定可靠,保证连接正常的同时还可以让服务器通过心跳包知道设备在线情况。
- ▶ 向串口终端发送:可以作为固定的查询指令,通过心跳包的方式发送到串口,来代替从服务器发送查询指令,从而节省流量,反应更快。
- 向 CAN 终端发送:可以作为固定的查询指令,通过心跳包的方式发送 CAN 数据到 CAN 口,来代替从服务器发送查询指令,从
 而节省流量,反应更快。

心跳包内容:根据需求,可以选择 ICCID 码,IMEI 码,SN 码,LBS 或者自定义数据作为心跳包数据。

> ICCID: SIM 卡的唯一识别码,适用于基于 SIM 卡识别的应用。

IMEI: 上网模块唯一识别码,主要应用在设备识别方面,与 SIM 无关。

➤ SN:产品序列号。

▶ USER: 用户自定义数据。

LBS: 设备当前的所处的经纬度和时间信息。

注:

网络心跳包是在透传模式下,一个心跳时间内没有数据向网络发送的时候才会发送,如果数据交互小于心跳时间,则不会发送心跳包。

串口/CAN 口心跳包是在透传模式下按照间隔时间一直发送数据,不受心跳时间内是否有数据交互的影响。

设置软件设置:

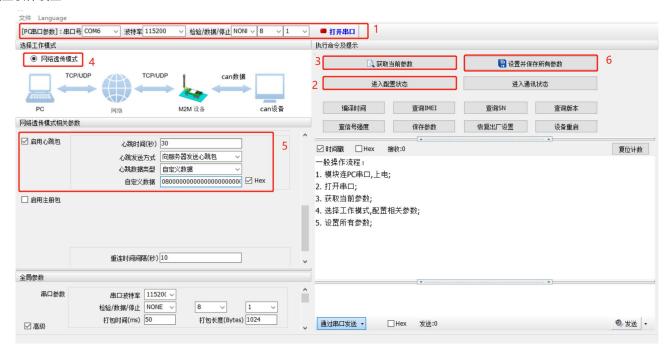


图 10 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+HEARTEN=ON	使能发送心跳包功能
2	AT+HEARTTP=NET	设置心跳包发送方向类型,向网络服务器端发送
3	AT+HEARTDT=080000000000000000000000000000000000	设置心跳包数据,将数据设置为 0800000000000000000000000000000000000
4	AT+HEARTTM=30	设置心跳包的发送间隔时间,将发送间隔时间设置为 30 秒

2.2.4. 注册包功能

注册包可以作为 DTU 获取服务器功能的授权码,也可以作为数据包头,方便服务器识别数据来源。因此在使用 USR-CANET200-C1时,可以在网络透传模式下,选择开启注册包功能,让 DTU 向服务器发送注册包。

注册包发送方式:根据注册包作用的不同,选择不同的发送方式。本产品的注册包发送方式有以下三种:

- ▶ 连接发送:连接服务器成功后,发送注册包到服务器,并且只发送一次。
- ▶ 数据携带:向服务器发送数据时,在数据前增加注册包后发送到服务器。
- 连接发送+数据携带:连接服务器成功后,发送注册包到服务器,同时向服务器发送数据时,在数据前增加注册包后再发送到服务器端。

注册包内容:根据需求,可以选择 ICCID 码,IMEI 码,SN 码或者自定义数据作为注册包数据。

- ▶ ICCID: SIM 卡的唯一识别码,适用于基于 SIM 卡识别的应用。
- ▶ IMEI: 上网模块唯一识别码,主要应用在设备识别方面,与 SIM 无关。
- ➤ SN:产品序列号。

➤ USER: 用户自定义数据。

设置软件设置:

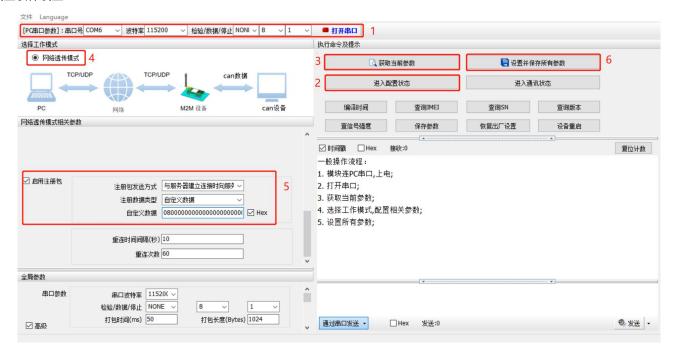


图 11 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+REGEN=ON	使能发送注册包功能
2	AT+REGTP=USER	设置注册包数据类型
3	AT+SAT+REGDT=0800000000000000000000000000000000000	设置自定义数据,将数据设置为 0800000000000000000000000000000000000
4	AT+REGSND=LINK	设置注册包的发送方式,将发送方式设置为建立连接时发送

2.3. 串口功能

2.3.1. 串口基本参数

串口基础参数包括:波特率,数据位,停止位,校验位。

》 波特率: 串口通讯速率,可设置范围为: 1200~460.8Kbps,波特率支持自定义波特率。

▶ 数据位:数据位的长度,范围为:8。

▶ 停止位:可设置范围为:1~2。

▶ 校验位:数据通讯的校验位,支持 None、Odd、Even 三种校验方式。

通过设置串口参数,保持与串口连接设备串口参数一致可以保证通信正常进行。

设置软件设置:

图 12 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+UART=115200,8,1,NONE	设置串口波特率为 115200,数据位 8,停止位 1,校验方式 NONE
2	AT+S	发送保存指令,模块会自动保存和重启。重启后连接网络

2.3.2. 串口成帧机制

1>时间触发模式

USR-CANET200-C1 在接收来自 UART 的数据时,会不断的检查相邻 2 个字节的间隔时间。如果间隔时间大于等于某一"时间阈值",则认为一帧结束,否则一直接收数据直到大于等于所设置的打包长度字节。将这一帧数据作为一个 TCP 或 UDP 包发向网络端。这里的"时间阈值"即为打包间隔时间。可设置的范围是 10ms~500ms。出厂默认 50ms。

这个参数可以根据 AT 命令来设置, AT+UARTFT=<time>。

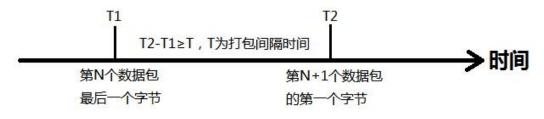


图 13 时间触发模式

2>长度触发模式

USR-CANET200-C1 在接收来自 UART 的数据时,会不断的检查已接收到的字节数。如果已接收到的字节数等于某一"长度阈值",则认为一帧结束,否则一直等待打包时间结束。将这一帧数据作为一个 TCP 或 UDP 包发向网络端。这里的"长度阈值"即为打包长度。可设置的范围是 1~4096。出厂默认 1024。

这个参数可以根据 AT 命令来设置, AT+UARTFL=<length>。

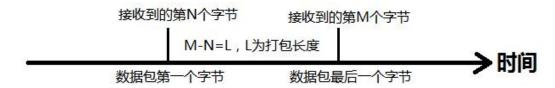


图 14 长度触发模式

2.4. 特色功能

2.4.1. CAN 转 RS485 功能

USR-CANET200-C1 支持 CAN 转 RS485 通信,默认关闭。勾选"CAN 与串口转化使能"之后,可以实现 CAN 设备和 RS485 串口设备的 CAN 协议数据传输。启用该功能后,不影响 CAN 口与网络服务器的数据通信。

设置软件设置:

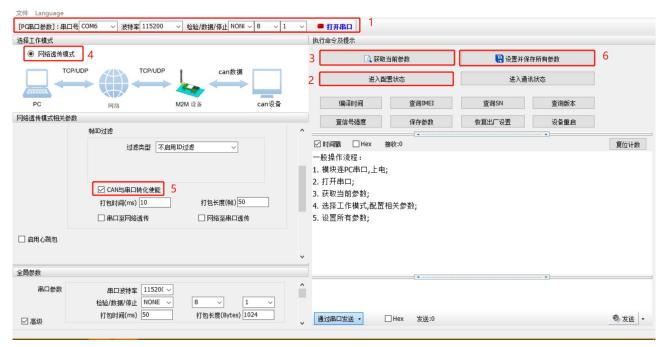


图 15 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+CAN2UART=ON	启用 CAN 与串口转化使能
2	AT+S	发送保存指令,模块会自动保存和重启。重启后连接网络

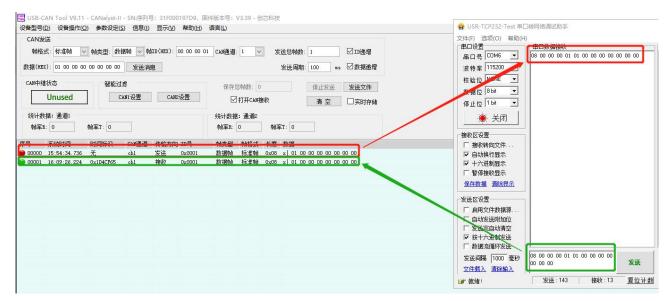


图 16 通信测试图示

2.4.2. 串口转网络

USR-CANET200-C1 支持串口转网络通信,默认关闭。启用该功能之后,RS485 串口设备的数据可以透传至网络服务器。设置软件设置:

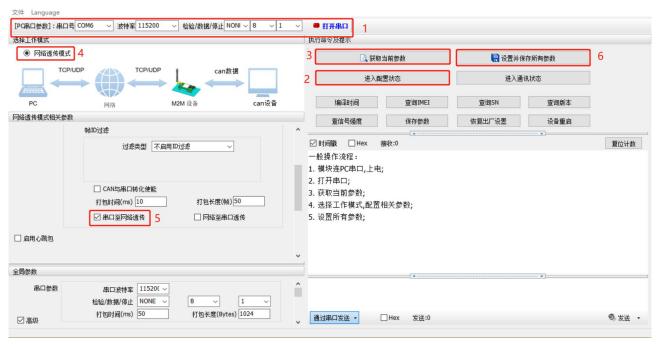


图 17 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+UART2NET=ON,OFF	启用串口至网络透传
2	AT+S	发送保存指令,模块会自动保存和重启。重启后连接网络

2.4.3. 网络转串口

USR-CANET200-C1 支持网络转串口通信,默认关闭。启用该功能之后,网络服务器的数据可以透传至 RS485 串口设备。设置软件设置:

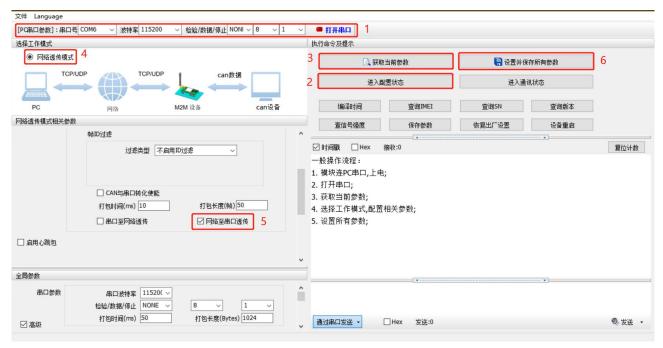
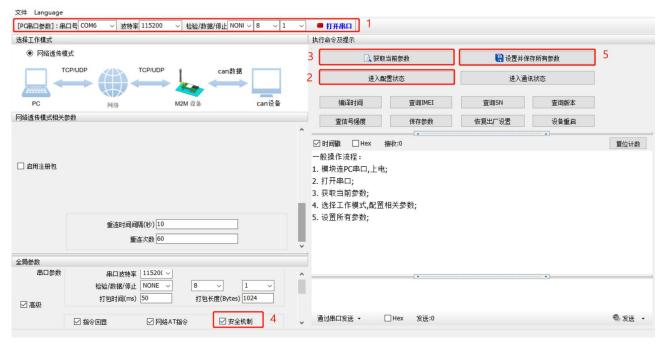


图 18 设置软件示意图

指令设置:


序号	指令设置	设置内容
1	AT+UART2NET=OFF,ON	启用网络至串口透传
2	AT+S	发送保存指令,模块会自动保存和重启。重启后连接网络

2.4.4. 安全机制

DTU 具有安全机制,当选择开启安全机制,进入配置状态后,需要用户先输入正确密码的登录指令,才能进行后续的操作,密码正确即登录设备,再次发送登录指令为修改登录密码操作,如果登录密码不正确,将返回"+CME ERROR:73",其他非登录指令提示"please log in at command first",指示用户需要先输入登录密码,且 30 秒内仍不发送登录指令,设备将自动退出配置状态。

该功能默认关闭,用命令字 AT 指令操作设备,将不受以上限制。

设置软件设置:

图 19 设置软件示意图

指令设置:

序号	指令设置	设置内容
1	AT+SAFEATEN=ON	开启安全机制
2	AT+S	发送保存指令,发送之后模块会自动保存和重启
3	AT+SIGNINAT=usr_cn	开启安全机制后的设置登录指令
4	AT+VER	查询版本号
5	AT+SIGNINAT=usr_cn#	修改登录密码
6	AT+S	发送保存指令,发送之后模块会自动保存和重启

2.4.5. 基站定位

USR-CANET200-C1 支持基站定位功能,可以通过运营商的网络获取到设备的大体位置,定位精度一般在 100 米左右。基站定位信息是通过 AT+LBS 指令获取,可以配合串口 AT、网络 AT 指令灵活使用。

2.4.6. 固件升级

USR-CANET200-C1 支持远程 fota 升级和 USB 升级两种方式,远程 FOTA 升级需要联系厂家技术支持,并提供 IMEI 以及设备当前版本号,同时要保证模块可以正常联网即可(推荐使用)。

本章节重点介绍 USB 升级方式。

- 1) 硬件连接: USR-CANET200-C1 支持通过 USB 口进行升级, USB 口是专门用于升级使用, 用户不可用做通讯串口。
- 2) 安装驱动,驱动文件可以去官网下载。
- 3) 用 USB 线连接电脑和设备,并按下设备上 Reload 按键同时给设备上电,设备进入下载模式,下载端口识别查询如下图。

图 20 下载端口识别图示

- 4) 升级工具:如果需要升级工具,可以联系厂家对应销售或者提交工单获取。获取后,在相应的路径下(UPGRADEDOWNLOAD\Bin)找到下载工具"UpgradeDownload.exe"并打开。
- 5) 加载固件,下载。点击"配置"按钮,加载固件,然后点击开始按钮,等待开始下载。如果模组已经在下载模块,则会立即下载,如果不是下载模式,需要按照步骤 1-4 操作模组,让模组进入下载模式后,将自行进行下载。

图 21 下载软件图示

6) 多个设备下载:一个下载完成后,直接更换设备即可,所有设备下载完成后,点击停止按钮停止烧写,然后关闭软件。

图 22 升级完成示意图

2.4.7. 恢复默认设置

USR-CANET200-C1 可以通过硬件和 AT 指令的方式恢复出厂参数:

指令恢复:进入配置状态后,从串口发送 AT+CLEAR 指令可实现恢复出厂参数。

硬件恢复:上电后,按下 Reload 按键 3~15s,然后松开,除 PWR 灯外其他指示灯会熄灭,然后重新亮起,设备参数恢复至出厂默 认参数。

2.4.8. 无数据重启机制

USR-CANET200-C1 引入了无数据重启的异常处理机制,该机制**默认开启**,参数为 1800s。即 30min 内,设备未接收到(服务器) 传来的用户数据,将自动重启。该功能可以通过 AT 指令: AT+RSTIM 对功能与参数进行配置,设置为 0 即为关闭该功能。

3. 参数设置

3.1. 串口配置

3.1.1. 设置软件说明

图 23 设置软件说明

说明:

- 1. 软件串口参数设置区,需设置与 DTU 当前串口一致的参数,否则无法与 DTU 通信;
- 2. 工作模式选择区,选择 DTU 的工作模式;
- 3. 相关参数区,根据工作模式,显示不同的功能界面,配置当前模式的功能参数;
- 4. 全局参数区,设置 DTU 工作基本参数;
- 5. 数据发送区,发送数据和指令;
- 6. 数据接收区,接收来自 DTU 串口的打印数据;
- 7. 常用指令按钮,点击即可执行相应指令和功能。

3.2. AT 指令设置

当 USR-CANET200-C1 工作在网络透传模式时,可以通过向 USR-CANET200-C1 的串口发送特定时序的数据,让 USR-CANET200-C1 切换至"指令模式"。当完成在"指令模式"下的操作后,通过发送特定指令让 USR-CANET200-C1 重新返回之前的工作模式。

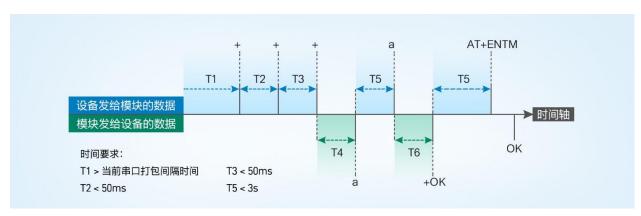


图 24 切换指令模式时序

从网络透传切换至指令模式的时序:

- 1) 设备通过串口给 USR-CANET200-C1 连续发送 "+++" , USR-CANET200-C1 收到 "+++" 后, 会给设备发送一个'a'。
- 2) 在发送"+++"之前的一个串口打包间隔时间内不可发送任何数据。
- 3) 当设备接收'a'后,必须在 3 秒内给 USR-CANET200-C1 发送一个'a'。
- 4) USR-CANET200-C1 在接收到'a'后,给设备发送 "+ok",并进入 "临时指令模式"。
- 5) 设备接收到"+ok"后,知道 USR-CANET200-C1 已进入"临时指令模式",可以向其发送 AT 指令。

从指令模式切换回网络透传的时序:

- 1) 设备通过串口给 USR-CANET200-C1 发送指令 "AT+ENTM", 并在指令后加回车符, 回车换行 16 进制表示 0x0D 0x0A。
- 2) USR-CANET200-C1 在接收到指令后,给设备发送"OK",并回到之前的工作模式。
- 3) 设备接收到 "OK"后,知道 USR-CANET200-C1 已回到工作模式。

3.3. 串口 AT 指令

串口 AT 指令是指工作在透传模式下,不需要切换到指令模式,直接使用密码加 AT 指令的方式去查询和设置参数的方法。一般应用在客户设备需要在模块运行时查询或者修改参数使用,不需要复杂的+++时序,快速的查询或者设置参数。

以查询 SocketA 参数为例,发送 AT 指令。注:此处 AT 指令中的回车符和换行符分别用[0D]和[0A]表示,实际使用中请输入正确的字符。以下为操作步骤示例。

使用串口 AT 指令首先需要确认固件支持该功能,并且工作在透传模式下,可以按照如下操作进行配置。

- 1) 设置工作模式为"网络透传"。
- 2) 确认当前的密码字, DTU 默认密码为: usr.cn#。

图 25 设置软件示意图

3) 完成设置后,点击设置并保存所有参数按钮,完成参数设置。

图 26 设置软件示意图

注: 以上为准备工作, 也可以通过 AT 指令实现, 完成设置后即可在透传模式下实现串口 AT 指令。

4) CANET200-C1 重启后,从串口向 CANET200-C1 发送 "usr.cn#AT+SOCKA[0D][0A]", DTU 接收后,会返回相应的查询信息。

图 27 设置软件示意图

3.4. 网络 AT 指令

网络 AT 指令是指工作在透传模式下,通过网络发送密码加 AT 指令的方式去设置和查询参数。网络 AT 指令和串口 AT 指令类似,区别在于网络 AT 是从网络端下发 AT 指令,用于客户服务器远程查询或者修改参数使用,客户可以使用网络 AT 指令进行批量的参数修改和查询,方便对拥有的设备进行管理。

以查询 SOCKA 参数为例,发送 AT 指令。注:此处 AT 指令中的回车符和换行符分别用[0D]和[0A]表示,实际使用中请输入正确的字符。

图 28 网络 AT 指令设置软件示意图

查询当前的密码字,查询/设置指令为 AT+CMDPW。

通过软件可以看到当前的命令密码是: usr.cn#。

除了做以上设置外,还要启用对网络连接如 Socket A 的设置。完成设置后,重启模块,启动完毕后,等待模块连接服务器,连接成功后,从服务器端向模块发送 usr.cn#AT+SOCKA[0D][0A](注意该字符串最后有一个回车换行),模块接收后,会返回响应信息。

如下图:

图 29 网络 AT 指令示例图

3.5. AT 指令集

表 4 AT 指令集

序号	指令	功能描述	
	通用指令		
1	AT	测试	
2	AT+Z	重启模组	
3	AT+S	保存配置并重启	
4	AT+CLEAR	恢复出厂并重启	
5	AT+E	查询/设置回显使能	
6	AT+ENTM	退出配置模式	
7	AT+WKMOD	查询/设置工作模式	
8	AT+CMDPW	查询/设置命令密码	
9	AT+STMSG	查询/设置启动信息	
10	AT+RSTIM	查询/设置设备无数据重启时间	
11	AT+NATEN	查询/设置网络 AT 使能	
12	AT+CSQ	查询信号强度	
13	AT+CALIBINFO	查询射频状态	
14	AT+SYSINFO	查询连接制式	
CAN 通信指令			
1	AT+CAN	设置/查询 CAN 工作模式、波特率、过滤类型和过滤范	
		围	
2	AT+CAN2UART	查询/设置 CAN 与串口转化使能	

3	AT+CANFT	设置/查询 CAN 打包时间		
4	AT+CANFL	设置/查询 CAN 打包长度		
信息查询指令				
1	AT+VER	查询固件版本号		
2	AT+ZVERSION	查询 SDK 版本号		
3	AT+BUILD	查询固件编译时间		
4	AT+SN	查询 SN 码		
5	AT+IMEI	查询 IMEI 号		
6	AT+ICCID	查询 ICCID 码		
7	AT+CIP	查询本地 IP		
8	AT+CNUM	查询 SIM 卡电话号码		
9	AT+LBS	查询小区基站信息		
安全机制				
1	AT+SAFEATEN	查询/设置安全机制使能		
2	AT+SIGNINAT	登录/设置登录密码		
	串	口参数指令		
1	AT+UART	查询/设置串口参数		
2	AT+UARTFL	查询/设置串口打包长度		
3	AT+UARTFT	查询/设置串口打包时间		
4	AT+UART2NET	串口与网络转发使能		
	连	接参数指令		
1	AT+APN	查询/设置 APN 信息		
2	AT+SOCKA	查询/设置 socket A 参数		
3	AT+SOCKALK	查询 socket A 连接状态		
4	AT+SOCKASL	查询/设置 socket A 短连接使能		
5	AT+KEEPALIVEA	查询/设置 socket A 的 keepalive 参数		
6	AT+SHORTIM	查询/设置 socket A 短连接超时时间		
7	AT+SHORTATM	查询/设置 socket A 短连接超时时间		
8	AT+SOCKRSNUM	查询/设置 socket 最大重连次数		
9	AT+SOCKRSTIM	查询/设置 socket 重连时间间隔		
注册包指令				
1	AT+REGEN	查询/设置注册包使能		
2	AT+REGTP	查询/设置注册包内容类型		
3	AT+REGDT	查询/设置自定义注册信息		
4	AT+REGSND	查询/设置注册包发送方式		
心跳包指令				
1	AT+HEARTEN	查询/设置心跳包使能		

2	AT+HEARTTP	查询/设置心跳包的发送方式
3	AT+HEARTDT	查询/设置心跳包数据
4	AT+HEARTTM	查询/设置心跳包发送间隔
5	AT+HEARTSORT	查询/设置心跳包数据类型
6	AT+HEART	查询/设置心跳包参数

注:详细的 AT 指令使用过程可以参照《USR-CANET200-C1 AT 指令集》

4. 联系方式

公 司:济南有人物联网技术有限公司

地 址:济南市历下区茂岭山三号路中欧校友产业大厦 12、13 层有人物联网

网 址: http://www.usr.cn

客户支持中心: http://im.usr.cn

邮 箱: sales@usr.cn

电 话: 4000-255-652 或 0531-66592361

有人定位: 可靠的智慧工业物联网伙伴

有人愿景:成为工业物联网领域的生态型企业

有人使命: 连接价值 价值连接

价值观: 天道酬勤 厚德载物 共同成长 积极感恩

产品理念: 可靠 易用 价格合理

企业文化: 有人在认真做事!

5. 免责声明

本文档提供有关 USR-CANET200-C1 系列产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

6. 更新历史

固件版本	更新内容	更新时间
V1.0.0	初版	2022-08-30
V1.0.1	更改 can 波特率范围	2023-03-28

可信赖的智慧工业物联网伙伴

天猫旗舰店: https://youren.tmall.com

京东旗舰店: https://youren.jd.com

官 方 网 站: www.usr.cn 技术支持工单: im.usr.cn 战略合作联络: ceo@usr.cn

软件合作联络: console@usr.cn

电话: 4000 255 652

登录商城快速下单

地址: 山东省济南市历下区茂岭山三号路中欧校友产业大厦 12、13 层有人物联网