

WH-L101

LoRaWAN 标准协议

联网找有人,靠谱

可信赖的智慧工业物联网伙伴

1. 产品简介	
1.1. 产品特点	3
1.2. 应用场景	3
2. LoRaWAN 组网介绍	3
2.1. LoRaWAN 协议介绍	3
2.2. LoRaWAN 应用拓扑	4
2.3. LoRaWAN 网络设备类型	5
3. 产品基本参数	5
3.1. 规格参数	5
3.2. 硬件接口说明	6
4. 上位机参数介绍	8
5. 产品功能介绍	
5.1. LORaWAN 射频参数设置	
5.1.1. 网关端配置:	15
5.1.2. 节点端配置	15
5.2. 设备应用添加	16
5.2.1. 网关添加应用层服务	16
5.3. OTAA 入网	17
5.3.1. 配置节点设备入网	17
5.4. ABP 入网	19
5.4.1. 配置节点设备入网	19
5.5. 网关与节点数据通讯调试	21
5.5.1.节点上报	21
5.5.2. 服务器下发	24
5.5.3. 组播	25
5.6. 固件升级	27
6. AT 指令介绍	28
6.1. AT 指令命令模式	
6.2. AT 指令错误代码	
6.3. AT 指令格式	29
6.4. AT 指令集	29
6.5. 指令详解	
7. 常见问题	
8. 免责声明	
9. 更新历史	

1. 产品简介

WH-L101-CN470/AU915 是基于 Sx126x 芯片研发的全新一代 LoRa WAN 无线数传模组,其工作频段 CN470:470-510MHz、AU915: 915-928MHz,工作范围 1.9-3.7V、TTL 数据口、LCC 封装。本说明书主要介绍该模组的使用方法。

1.1. 产品特点

- ◆ 基于 Sx126x 芯片研发的全新 LoRaWAN 通讯模组,具有更高的抗干扰性、稳定性、传输距离更远。
- ◆ 组网灵活,能够支持连接其他标准 LoRaWAN 网关。
- 广连接,适合大场景多终端连接应用。
- ◆ 入网方式灵活,支持 OTAA/ABP 入网、热启动。
- ◆ 高低频可选,支持 CN470/AU915。
- ◆ 支持 Class C 协议,高能效/高接收数据。
- ◆ ADR 自适应速率, 动态调整速率, 提高传输成功率
- ◆ 工作频段 470-510Mhz,空旷环境下传输大于 5500 米,发射功率 21.5±0.5dBm,接收灵敏度可达-140dBm@0.268Kbps。
- ◆ LBT 功能,发送数据前检测信道环境干扰噪声,检测到噪声延时发送,防止信道冲突,保障设备数据通信成功率。
- ◆ 数据重传,数据传输交互应答机制,无应答进行重发,保证数据传输的可靠性。
- ◆ 数据传输加密处理,提高用户数据保密性。
- ◆ 心跳保活机制,维护 LoRaWAN 网络状态,提高无线网络可靠性。
- ◆ 精心设计软件看门狗功能,防止模组宕机,发生异常,可快速重启恢复。
- 1.2. 应用场景
- ♦ 无线智能抄表行业
- ♦ 智慧路灯无线控制
- ◆ 智慧农业系统、智能灌溉远程控制
- ◆ 智慧工地设备监测,塔机运行状态监测
- ◆ 智慧油田,采油机状态监测
- ◆ 智能家居及工业传感器
- 配电柜电力检测,机房监控
- ♦ 智能楼宇能源监测

2. LoRaWAN 组网介绍

2.1. LoRaWAN 协议介绍

LoRaWAN(Long Range Wide Area Network)是一种为物联网(IoT)设计的低功耗广域网(LPWAN)通信协议。它基于 LoRa 技术,通过扩频调制实现长距离、低功耗的无线通信,适用于需要远距离数据传输的物联网应用。LoRaWAN 标准已被联合国负责信息和 通信技术(ICT)的专门机构国际电信联盟(ITU)认可为 LPWAN 全球标准。

LoRaWAN 网络架构包括终端设备、网关和网络服务器。终端设备通常是传感器或智能仪表,它们通过 LoRaWAN 协议与网关通信。 网关接收来自多个终端设备的数据,并将这些数据通过互联网传输到网络服务器进行处理和分析。网络服务器负责管理网络、处理数据和 确保数据安全。

LoRaWAN 的优势在于其能够覆盖广阔的地理区域,同时支持大量设备的连接、低功耗、高容量、低成本、灵活性和可扩展性,无运 营商资费等,对于智能城市、工业自动化、环境监测、智慧农业等场景是非常理想的选择。

2.2. LoRaWAN 应用拓扑

图 1 基本应用图示

LoRaWAN 网络拓扑结构属于星型结构,由节点(End Node, EDs),网关 (Gateways, GWs),网络服务器 (Network Server, NS),应 用服务器 (Application Server)四部分组成。网关与节点之间采用星型网络拓扑,节点向网关进行组网,网络服务器处理网关与节点的信 息,应用服务器作为接收端或者采集端进行远程数据获取与管理。

节点:也可称为终端设备,是连接物理传感器和网络的设备,通过 LoRa 无线通讯将数据发送到网关。

网关:是连接节点与网络服务器的设备,能够接收和转发节点的数据,还可进行对节点的管理与配置。

网络服务器:也被称为 NS 服务器,处理 LoRaWAN 网络层的相关数据,主要包括 MAC 命令、区域参数和自适应速率(ADR)等, 主要作用是为 LoRaWAN 网络中节点设备提供网络连接、设备管理和数据处理能力。(我司 USR-LG280 网关支持内置 NS 服务器)

应用服务器:也可理解为用户管理平台,处理终端设备数据,对设备进行数据采集/远程管理等。

2.3. LoRaWAN 网络设备类型

表1 LoRaWAN	设备类型
------------	------

设备类型	简介	数据下行时间	应用场景
Class A	Class A 设备采用一个随机的时间基准	终端发送一个上行传输信号	气体监测、水浸检测、机器
	(ALOHA 协议)进行上报数据,每次上行之后都	后才能与服务器进行下行通信,	异常监测等
	会紧跟着两个短暂的下行接收窗口,从而实现双	与服务器任何时候的下行通信都	
	向传输,低功耗最小。	在上行通信之后进行	
Class B	Class B 设备建立在 Class A 基础上, 并会在	在终端固定接收窗口即可对	阀门控制、水汽电表检测、
	预设时间中开放多余的接收窗口,为了达到这一	其下发数据	能耗监测等
	目的,终端设备会从网关接收到一个 Beacon,		
	以此获得同步,这一方式会让服务器知道终端设		
	备正在"倾听"		
Class C	Class C 设备同样基于 Class A,在不需要发	终端保持接收状态,任意时	灯光控制、闸门控制、远程
	送数据的情况下,一直打开接收,只有再发送数	刻可以向终端下发数据	运维等
	据时短暂关闭。		

注:目前设备只支持 Class C 设备类型, Class A/B 类型请关注后续信息发布或联系技术支持。

3. 产品基本参数

3.1. 规格参数

分类	规格参数	参数范围
	无线方案	Sx126x
	工作标码	WH-L101-CN470, 470-510MHz
无线参数	工IF观权	WH-L101-AU915, 915-928MHz

	发射功率	21±0.5dBm(峰值)			
	接收灵敏度	-140dBm @0.268Kbps			
	传输距离	测试条件:晴朗,空旷,21.5dBm 发射功率,天线增益 3dBi,高度大于 2m 最远距离:5500m @DR0 速率			
	天线选项	IPEX 座			
	数据接口	UART: 1200bps - 115200bps			
	工作电压	1.9V - 3.7V,推荐 3.3V			
		发射电流 112mA@3V3 max			
	工作电流	接收电流 8mA@3V3 max			
硬件参数		休眠电流 5µA@3V3 ave			
	工作温度	-40℃ ~ +85℃			
	工作湿度	10~90%RH(无凝露)			

3.2. 硬件接口说明

◆ WH-L101-CN470/AU915 模组实物图与引脚定义:

图 3 模组实物图 表 2 LCC 封装引脚定义

管脚	名称	信号类型	说明
1	GND	Р	电源地
2	RFIO	ΙΟ	射频输入输出
3	GND	Р	电源地
Λ	nDagat	т	模块复位,低电平有效,模块内部已添加 10K 上拉
4	likeset	1	电阻和 100nF 复位电容, 客户无需外接其他电路
5*	GPIO1	ΙΟ	未开放,预留 GPIO
6*	GPIO2	ΙΟ	未开放,预留 GPIO
7*	UART_TX	0	未开放,预留 UART5_TX
8*	UART_RX	Ι	未开放,预留 UART5_TX
9*	GPIO3	ΙΟ	通用 GPIO, 预留 I2C_SDA 功能
10*	GPIO4	ΙΟ	通用 GPIO, 预留 I2C_SCL 功能
11	GND	Р	电源地
12	GND	Р	电源地

13	VCC	Р	电源输入,电压范围: 1.9V-3.7V			
14	VCC	Р	电源输入,电压范围: 1.9V-3.7V			
15	NC	NC	NC			
16	NC	NC	NC			
17	GND	Р	电源地			
18	NC	NC	NC			
19	UART_TX	0	UART 的 TX 信号			
20	UART_RX	Ι	UART 的 RX 信号			
21	Reload	Ι	拉低 3-15s 恢复出厂设置			
22	NC	NC	NC			
23	WAKE	Ι	激活/睡眠功能; 高电平:模块将激活,若BUSY引脚为高电平,用 户可发送数据(注:在发送数据过程中不允许将 wake 引脚拉低) 低电平:模块将进行睡眠,并停止所有功能			
24	STAT	0	注册入网与通信成功标识 注册入网: 高电平:模块己注册入网成功 低电平:模块在注册入网过程中 数据通信: 高电平:单次空口数据通信发\收成功 低电平:单次空口数据通信发\收失败			
25*	GPIO5	IO	通用 GPIO, 预留 AD 功能			
26	NC	NC	NC			
27	NC	NC	NC			
28	GND	Р	电源地			
29	GND	Р	电源地			
30	485 控制引脚	ΙΟ	使能 485 功能后控制 485 芯片。使用 485 功能,设置软件流控 NFC 需要改为 485,设置软件保存参数 重启生效。			
31	NC	NC	NC			
32	SWCLK	ΙΟ	SWD CLK, SWD 时钟			
33	SWDIO	ΙΟ	SWD DAT, SWD 数据			
34	NC	NC	NC			
35	GPIO6	ΙΟ	通用 GPIO			
36	BUSY	0	注册入网和数据通信状态 注册入网: 高电平:模块己注册入网成功 低电平:模块在注册入网过程中			
			数据通信: 高电平:模块空闲,指示用户 MCU 可向模块 写入数据 低电平:模块忙,指示用户 MCU 不允许向模块写入 数据			

37	NC	NC	NC
38	NC	NC	NC
39	NC	NC	NC
40	NC	NC	NC
41	NC	NC	NC
42	NC	NC	NC
43	NC	NC	NC
44	GND	Р	电源地

4. 上位机参数介绍

	▶ 进入配置状态	☑ ► 读取参数 设置	参数 退出配	▲ 置状态 固件升级	设备	▲ ① · 型号选择 关于	
设备信息	EUI:	B5EE80B732F	FF736	固作	‡ <mark>版</mark> 本:	V1.0.3.000000.0000	
基本参数							
	频段选择:	CN470		~			
LoRaWAN	N入网配置:						
	CLASS:	CLASS C	~	入网模	武:	otaa ~	
	入网热启动:	О开	● 关	AppE	UI:	06AC299F09728AE5	
	AppKey:	7DB75BC1B8	E69E5B2E6B323(0C4E15315 DevE	UI:	B5EE80B732FFF736	
速率/频段	配置:						
	ADR:	◉ 开	O 关				
RX1:	速率:	DR5	~	频	段:	8 15	
	速率范围:	DR0	~	DF	R4	~	
RX2:	速率:	DR5	~	频	段:	500300000	
工作模式:							
	ACK数据:	UNCONFIRM	· ·	数据重传次	:数:	0 ~	
	LBT:	О Л	◉ 关	超时无数据重	記:	⊛开 O关	43200
串口设置:							
	波特率:	115200	~	校验/数据/停止:	NONE	8 ~ 1 ~	
			图 4	上位机总览			

工具栏:

串口选择:选择当前要配置节点的串口,并正确填写串口信息

进入配置状态:点击此按钮可以快捷进入 AT 指令模式

读取参数:点击此按钮可以读取当前设备内部参数

设置参数:一键配置当前设置的参数,会自动重启保存。设置完之后设备按照当前配置内容工作。

退出配置状态:可以从指令状态切换到透传模式。

固件升级:设备本地升级固件

设备型号选择:不同的设备型号对应内容不同,选择正确的产品型号进行配置

设备信息: EUI: 节点设备的唯一标识码; 固件版本: 设备的固件版本号

基本参数:

频段选择:只读,可以看出当前设备属于哪个频段

(1) LoRaWAN 入网配置:

CLASS: 设备类型

- ① 入网模式: 支持 OTAA 和 ABP 两种入网方式
- 1) OTAA: 通过空中交互与 LoRaWAN 网络服务器(NS)进行入网激活
- ◇ 入网热启动:开启后,在节点成功加入网络之后,注册上下文被保存,复位后无需重新 JOIN,即可恢复 LoRaWAN 通讯。
- ◆ AppEUI: 标识 LoRaWAN 网络中的应用(8字节),每个设备应据有唯一性以避免冲突。
- ◇ AppKey:应用程序密钥,用于设备入网(16字节),能够确保设备与网络服务器之间(NS)之间传输数据是加密的,从而保 障数据的机密性和完整性。

OTAA 入网方式需要设备 EUI、AppEUI、AppKey 三个元素,共同确保了设备在 LoRaWAN 网络中的安全性和唯一性。

- 2) ABP: 绕过入网交互流程直接加入 LoRaWAN 网络进行数据通信
- ◆ DevAddr: ABP 入网使用的设备地址,唯一标识设备在 LoRaWAN 网络中的地址
- ◇ NwksKey: 网络会话密钥, 用于网络层数据的加密和解密
- ◆ AppSKey: 应用程序会话密钥, 用于应用层数据的加密和解密

ABP 入网方式, 节点使用 DevAddr、NwkSkey 和 AppSkey 进行上下行数据交互。

- (2) 速率/频段配置:
- ADR:通过动态调整终端设备的传输参数(如数据速率和发射功率)来优化网络性能。网络服务器根据设备的上行链路数据(如 接收信号强度指示 RSSI 和信噪比 SNR)计算最佳参数,并通过下行链路消息通知设备进行调整,使用过程建议打开。
- 数据接收窗口 RX1\RX2: RX1 和 RX2 窗口在 LoRaWAN 协议中提供了设备接收下行消息的两个关键机会。RX1 窗口在时间、 频率和数据速率上较为灵活,(上行消息发送后的特定时间(通常为 1 秒)打开 RX1 窗口),优先用于接收下行消息;RX2 窗 口则使用固定的参数,作为备用接收窗口,确保在各种条件下都能提供可靠的下行通信途径,在上行消息之后不仅仅打开 RX1 和 RX2 窗口,更持续保持 RX2 窗口的频率和数据速率进行接收。这种双窗口设计提高了通信的可靠性和灵活性,同时也有助于 优化设备的功耗。

1) **RX1**: RX1 窗口在设备发送上行数据包之后的一段固定时间内(通常为1秒)打开用于接收;在 Class C 设备中,这1秒的间 隔时间会打开 RX2 窗口保持接收。

 [◆] 速率: RX1 窗口的数据速率通常是上行数据速率减 1, 假如网关的 LoRa 信道设置 DR5, 那么我们节点的 RX1 窗口速率可设置
 为 4。可参考速率表格

数据速率(DR)	扩频因子(SF)	带宽 (BW)
DRO	SF12	125kHz
DR1	SF11	125kHz
DR2	SF10	125kHz
DR3	SF9	125kHz
DR4	SF8	125kHz
DR5	SF7	125kHz

表 3 速率表格

♦ 速率范围:选择 DR0——DR5

◆ 举例:

如果网关射频端设置的带宽 125kHz、SF7,对应 DR5,节点这里我们建议设置的小一些,选择 DR4。

状态		常规	射频	高级设置	自定义设置	数据流						
		须段					CN4	70	*	- 苗田銀		
Packet Forwarder					名称						中心模型/MHz	
Network Server					Radio	0					472.3]
44.31/44+CT					Radio	1					472.9	
05034546		多信道设置										
网络			启用		日朝			射機話	8			模型MHz
5%L					0			Radio 0	~		471.9	
37546			•		1			Radio 0	~		472.1	
维护	•				2			Radio 0	~		472.3	
			2		3			Radio 0	~		472.5	
APP	•				4			Radio 1	~		472.7	
					5			Radio 1	~		472.9	
			 ✓ 		6			Radio 1	~		473.1	
			2		7			Radio 1	~		473.3	
		LoRa信道设置	1									
			启用		射频链	游	操率/MHz			带宽kHz		数据速率
			•		Radio 0	*	472.1			125KHZ ¥		SF7 🗸

图 6 网关信道设置

设备信息:	EUI:	B5EE80B732FFF736	固件版本:	V1.0.3.000000.0000
本参数				
频段	选择:	CN470	~	
LoRaWAN入网	配置:			
0	CLASS:	CLASS C	入网模式:	ABP ~
Dev	vAddr:	12345678	NwkSKey:	7DB75BC1B8E69E5B2E6B3230C4E15315
App	oSKey:	8DB75BC1B8E69E5B2E6B3230C4	E15315	
速率/频段配置:				
	ADR:	●开 ○ 关		
RX1:	速率:	DR4 ~	频段:	8 15
海	率范围:	DR0 V	DR5	~
0	- Martin Contractor			

- ◆ 频段:和网关的多信道设置保持一致,为了方便,我们这里把频段设置使用序号,序号与对应的频段请参考表格。
- 上行:96个信道,编号0到95,使用125kHz带宽,速率从DR0到DR5,编码率4/5;从470.3MHz开始以步长200kHz增 长到489.3 MHz。
- ▶ 下行: 48 个信道,编号 0 到 47,使用 125kHz 带宽,速率从 DR0 到 DR5,编码率 4/5;从 500.3 MHz 开始以步长 200 kHz 增长到 509.7 MHz。

表 4	CN470	频率	/通道对	照表
-----	-------	----	------	----

信道 计划	射频链路	信道序号	上行频点(MHz)既是节 点上报频点也是网关 接收频点	下行频点(MHz)既是网关 下发频点也是节点第一 个接收窗口频点	节点第二个接收窗 口	网关中心频点 (MHz)
		0	470.3	500.3		
	Radio 0	1	470.5	500.5		470 7
		2	470.7	500.7		470.7
0~7		3	470.9	500.9	505.3 MHz/	
		4	471.1	501.1		
	Radio 1	5	471.3	501.3	DRO	471 3
		6	471.5	501.5		-11.5
		7	471.7	501.7		
		8	471.9	501.9		
	Radio 0	9	472.1	502.1		477.2
		10	472.3	502.3		472.3
		11	472.5	502.5	505.3 MHz/	
8~15		12	472.7	502.7		
	Radio 1	13	472.9	502.9	DRO	472.0
		14	473.1	503.1		472.9
		15	473.3	503.3		
		16	473.5	503.5		
	Radio 0	17	473.7	503.7		/73.0
		18	473.9	503.9		4/3.7
		19	474.1	504.1	505.3 MHz/	
		20	474.3	504.3		

	· · · · ·					
16~23	Radio 1	21	474.5	504.5	DRO	474.5
.5 25		22	474.7	504.7	Ditto	
		23	474.9	504.9		
		24	475.1	505.1		
	Padio 0	25	475.3	505.3		
24~31	Radio 0	26	475.5	505.5	505.3 MHz/	4/5.5
		27	475.7	505.7	DRO	
		28	475.9	505.9		
	Padio 1	29	476.1	506.1		
	Radio 1	30	476.3	506.3		4/6.1
		31	476.5	506.5		
		32	476.7	506.7		
	Padio 0	33	476.9	506.9		
	Radio 0	34	477.1	507.1		4/7.1
		35	477.3	507.3		
32~39		36	477.5	507.5	505.3 MHZ/	
	Radio 1	37	477.7	507.7	DR0	477 7
		38	477.9	507.9		4//./
		39	478.1	508.1		
		40	478.3	508.3		
	Radio 0	41	478.5	508.5		470 7
		42	478.7	508.7		4/8./
		43	478.9	508.9	505 3 MHz/	
40~47		44	479.1	509.1	505151112,	
	Radio 1	45	479.3	509.3	DRO	470.0
		46	479.5	509.5		4/9.3
		47	479.7	509.7		
		48	479.9	500.3		
	Radio 0	49	480.1	500.5		400.2
		50	480.3	500.7		480.3
		51	480.5	5009	505 3 MHz/	
48~55		52	480.7	501.1	5051511112/	
	Radio 1	53	480.9	501.3	DRO	400.0
		54	481.1	501.5		480.9
		55	481.3	501.7		
		56	481.5	501.9		
	Radio 0	57	481.7	502.1		401.0
		58	481.9	502.3		401.9
		59	482.1	502.5	505.3 MHz/	
56~63		60	482.3	502.7		
	Radio 1	61	482.5	502.9	DRO	107 E
		62	482.7	503.1		402.3
ļļ		63	482.9	503.3		
		64	483.1	503.5		
	Radio 0	65	483.3	503.7		102 5
		66	483.5	503.9		403.3
		67	483.7	504.1	505.3 MHz/	
64~71		68	483.9	504.3		
	Radio 1	69	484.1	504.5	DRO	101 1
		70	484.3	504.7		404.1
		71	484.5	504.9		
		72	484.7	505.1		
	Radio 0	73	484.9	505.3		/05 1
		74	485.1	505.5	505.3 MHZ/	1.00+
		75	485.3	505.7	DR0	
72~79		76	485.5	505.9		
	Radio 1	77	485.7	506.1		
		78	485.9	506.3		195 7
		70	486 1	506 5		407./

		80	486.3	506.7		
		81	486.5	506.9		404 7
	Radio 0	82	486.7	507.1		486.7
	Radio o	83	486.9	507.3	505.3 MHz/	
80~87		84	487.1	507.5		
		85	487.3	507.7	DRO	407.2
	Dadio 1	86	487.5	507.9		487.3
	Raulo I	87	487.7	508.1		
		88	487.9	508.3		
		89	488.1	508.5		400.2
	Radio 0	90	488.3	508.7		488.3
		91	488.5	508.9	505 3 MHz/	
88~95		92	488.7	509.1	505.51 112,	
	Dadia 1	93	488.9	509.3	DRO	400.0
	Radio I	94	489.1	509.5		488.9
		95	489.3	509.7		

◆ 举例:

网关的多信道设置为

- S Internet			
启用	序号	射频链路	频率/MHz
	0	Radio 0 🗸	471.9
	1	Radio 0 🗸	472.1
	2	Radio 0 🗸	472.3
	3	Radio 0 🗸	472.5
	4	Radio 1 🗸	472.7
	5	Radio 1 🗸	472.9
	6	Radio 1 🗸	473.1
	7	Radio 1 🗸	473.3

图 8 网关射频信道频段设置

从网关设置的频段对应的信道表格上面是 8-15, 那么节点上面只设置频段序号 8-15 即可。

♦ 节点的频段序号设置:

速率/频段配置:

	ADR:	◎ 开	O关		
RX1:	速率:	DR4	~	频段:	8 [15
ì	惠率范围:	DR0	~	DR5	~
RX2:	速率:	DR5	~	频段:	500300000

图 9 节点信道频段设置

1) **RX2**: RX2 窗口使用固定的频率和数据速率,提供了一种标准化的备用下行通信手段。Class C 设备的通信中 RX2 窗口打开后

会一直保持接收状态,直到下一次上行数据发送。

- ◇ 速率: RX2 窗口是一种固定的接收窗口,用于增强网络设备与网关之间的通信可靠性,
- ◆ 频段: CN470(中国频段)一般设置为频段: 505.3MHz、速率: DR0(SF12,125kHz), AU915(澳洲频段)一般设置为频段:
 923.3MHz、速率: DR8(SF12,500kHz), (欧洲频段)一般设置为频段: 869.525MHz、速率: DR0(SF12,125kHz)。
- (3) 工作模式:
- ① ACK 数据:
- ◇ CONFIRM:确认帧模式,每个上行(设备到网关)或下行(网关到设备)的数据包都需要对方的确认(ACK),如果发送方没 有收到 ACK,它会重传数据包,直到达到最大重传次数,该模式提高了数据传输的可靠性,确保数据包被成功接收,但也增加 了网络的负载,收发时间过长。

- ◆ Unconfirmed: 非确认帧模式, Unconfirmed 模式是 LoRaWAN 的基本传输模式。在这种模式下, 节点设备将数据发送到网
 关, 但不要求接收任何确认消息。
- 重传次数:
- ♦ CONFIRM 模式下,可以根据自己需要选择重传次数。
- ◇ UNCONFIRM:非确认帧模式,在非确认帧模式下,发送方发送数据包后,不需要对方的确认(ACK),数据包发送后不管是否 被成功接收,发送方不会进行重传。减少了网络负载,提高了通讯效率,但是数据如有丢包可能无法被发现。
- ③ LBT:信道冲突防护,能够减少设备干扰,提高无线数据传输的成功率。
- ④ 超时无数据重启:设备异常防护机制,打开功能后,在超时时间内,无接收数据则进行重启;时间可设置,单位秒钟。
- (4) 串口设置
- ① 串口设置:根据设备实际需要选择对应波特率,波特率支持1200-115200范围,校验位支持NONE、ODD、EVEN,数据位支持7、8,停止位支持1、2。
- 高级设置
- (1) 心跳包:节点设备向网关发送心跳数据,保活机制;心跳间隔时间到来之后,如有数据发送,心跳不在发送,且心跳时间刷新。 AT 指令状态下时间不计算,退出 AT 指令后心跳时间刷新计时。
- (2) 时间:可设置范围 30-65535 秒,默认 300 秒;数据格式:HEX、ASCII;心跳内容:最大可设置 50 字节。
- (3) 组播: 组播(Multicast)功能允许网关向多个设备同时发送数据, 组播模式的主要优势在于它能够提高网络效率, 减少网关发送相同消息所需的时间和资源。
- (4) 组号:创建组播号,并为该组分配组播地址、组播 AppSKey 和 NwkSKey。然后,将组播组的相关信息下发到需要参与组播的 设备。
- (5) 组播地址: 组播地址是一种特殊的设备地址,用于标识特定的设备组。设备需要预先配置好组播地址,以便能够接收对应的组 播消息
- (6) APPSKEY: 组播应用会话密钥; NWKSKEY:组播网络会话密钥; 用于加密和解密组播消息。
- (7) 数据传输成功标志:只允许在工作模式中 CONFIRM 模式下面使用,每次上行之后,会跟随 ACK 返回数据(SNR 和 RSSI 值) 至串口中
- (8) 帧计数校验:用于确保数据传输的安全性和完整性。帧计数器在 LoRaWAN 协议的两个主要方向——上行(设备到网关)和下行(网关到设备)通信中都有应用。
- (9) 功率设置:通过选择序号来设置功率,可以选择 0-7 序号
- (10) 自定义功率: 打开之后可以进行设置功率数值。
- (11) 功率范围:通过序号选择 0-7,依次对应下方功率值如下图示;
- (12) 功率值设置:请遵循依次递减的方式进行设置。

如图上所示:设置使用 22dBm 的功率进行数据传输;如果我们把 ADR 功能<mark>(1)</mark>打开之后,节点首次入网会以 22dBm 功率进行传输, 之后网关会在(0-7 序号功率内)动态调整节点设备的功率;如果 ADR 功能关闭,节点则会以 22dBm 功率进行数据传输。

5. 产品功能介绍

WH-L101-CN470/AU915 集成 LoRaWAN 标准协议,串口采用 RS485 与用户设备数据交互,支持指令和上位机进行参数配置,能简 单快速的为用户提供 LoRaWAN 网络拓扑和远程无线数据传输功能,如下是产品功能框图。

图 11 功能框架图

5.1. LoRaWAN 射频参数设置

LoRaWAN 组网基本参数、8 通道频段设置与速率相关配置。

5.1.1. 网关端配置:

状态		常规	射频 高级设	音定义设置	数据流							
Packet Forwarder		射频信道设置										
Network Server		識段				CN4	70	~	應嗓扫描 •			
					各称					中心频率/MHz		
协议集成	•			R	adio 0					472.3		
	14			R	adio 1					472.9		
MER	,	多信道设置										
派统	•		启用		家号		REPORT	8			模革	EMHz
織					0		Radio 0	*		[471.9	
					1		Radio 0	~			472.1	
APP	•				2		Radio 0	~			472.3	
					3		Radio 0	~			472.5	
					4		Radio 1	~		2	472.7	
					5		Radio 1	~		[472.9	
					6		Radio 1	~			473.1	
					7		Radio 1	~		l.	473.3	
		LoRa信道设置										
			启用	81	模链路	频率/MHz			帶竅kHz			数据速率
				Radio	0 🗸	472.1			125KHZ ¥			SF7

参考上位机参数 速率/频段配置 章节:

图 12 USR-LG280 网关配置工作频段为 8-15

5.1.2. 节点端配置

	ADR:	●开 ○关	
RX1:	速率:	DR4 ~	频段: 8 15
	速率范围:	DR0 ~	DR5 v
RX2:	速率:	DR5 ~	频段: 500300000

图 13 WH-L101 节点配置频段 8-15

注意: 节点设备 RX1 窗口的数据速率通常是上行数据速率减 1, 假如网关的 LoRa 信道设置 DR5, 节点的 RX1 窗口速率可设置为 4。

5.2. 设备应用添加

LG280 网关可以通过 MQTT、HTTP、HTTPS、BACnet/IP 的方式接入其他私有服务器应用层。

5.2.1. 网关添加应用层服务

以 MQTT 应用添加为例:

状态	常规设置	应用	载荷编解码器	Profiles	设备	组播列表	网关	数据流			
Packet Forwarder	版用										
	1000		库号				名称			描述	操作
Network Server			2				MOTT			私有服务器	
协议集成 ▶			-								
											_
状态	常规	设置	应用 載	荷编解码器	Profiles	设备	组播列表	网关	数据流		
Packet Forwarder	应用										
	名称		MQTT								
Network Server	描述		私有服	务器							
协议集成	数据传	10									
- 11(2)											
网络					类型						操作
系統											
维护		保存	取当								

图 14 添加 MQTT 应用

这里需要先进行保存,然后再去添加数据传输类型

状态		常规设置	应用	载荷编解码器	Profiles	设备	组播列表	网关	数据流		
Packet Forwarder		· 國还		mqtt							
Network Server											
协议集成	•	类型 状态		MQTT 已连接	~						
网络	•	常規									
系统	•	MQTT服务器地址 MQTT服务器跳口		1883							
维护	•	客户纳D		www.usr.cn							
АРР	•	法提起时时间 使消回局		30 60							
		用户凭证									
		启用									
		TLS									
		启用									
		主题									
				数据类型					主题		
				Uplink data					/usr/uplink		QoS 0 ~
				Downlink da	ta				/usr/downlink/\$deveui		QoS 0 ~
				Multicast downlin	ik data				/usr/mult_downlink/001	[QoS 0 🗸

图 15 MQTT 参数添加

5.2.1.1. 服务器获取上行数据

(1) 配置网关 Uplink data 上行主题

格式要求: 主题可自定义, 用 "/" 对主题进行分级处理, 网关 Uplink Data 主题: /usr/uplink, MQTT 服务器订阅主题同网关 Uplink Data 主题。

5.2.1.2. 服务器下发数据

- (1) 配置网关 Downlink data 下行主题
 - 格式要求:在LG280 网关 Downlink data 下行主题格式为: /usr/downlink/\$deveui,其中/\$deveui为固定格式,其他层级 内容可自定义。
- (2) MQTT 服务器发布主题下发数据
 - 发布主题格式:和网关设置的发布主题一致,\$deveui要更换为对应节点设备的EUI数据,例如://usr/downlink/B5EE80B732FFF736

数据下发格式:需要遵循一定的格式,却发送的数据需要使用 Base 64 格式,可以通过 Hex 转 Base64 工具进行数据转换。例如:发布内容为{"confirmed":false,"fport":10,"data":"MTIzNDU="};解析为:未启用确认包、下发端口为 10、数据内容为 "k4M="(16 进制数据: 3839)

图 16 MQTT 数据下发图示

5.2.1.3. 组播下发

(1) 配置网关 Multicast downlink data 下行主题

格式要求:主题可自定义,用"/"对主题进行分级处理,网关 Multicast downlink data 组播主题格式:/usr/mult_downlink/001

(2) MQTT 服务器发布组播数据

发布主题格式: /usr/mult_downlink/001; 主题格式可自定义, 和网关设置得该主题一致即可。不同的分组下面, 可通过发送数据 内容的 multicastName (组名) 区分不同的分组。

内容示例: {"multicastName":"1","fPort":10,"data":"MTIzNDU="};解析: 1 分组下,下发端口 10,数据内容为 "MTIzNDU="(16 进制数据: 3132333435)。

Publish	Subscribe	e Scripts	Broker Status	Log 发送
» /usr/m	ult_downlink	/001	•	Publish
{"multicastl	Name" <mark>"1"</mark> "fF	Port 10 data	""""""""""""""""""""""""""""""""""""""	
	组名	端口号	数据内容	

图 17 MQTT 组播下发图示

5.3. OTAA 入网

OTAA 激活模式,通过空中交互与 LoRaWAN 网络服务器(NS)进行入网激活。

5.3.1. 配置节点设备入网

每个节点设备出厂已配置 EUI,AppEUI 和 AppKey 需要用户使用上位机或者 AT 指令配置,同一网络下需要保持不同的数值。

5.3.1.1. 网关建立 Profiles

徳	常规设置	应用	载荷编解码器	Profiles	设备	组播列表	网关	数据流			
acket Forwarder	Device Profiles										
letwork Server			名称			最大输出功率			入同方式	工作方式	操作
			ClassA-AB	3P		0			ABP	Class A	2 ×
h议集成 🕨			ClassA-OT	AA		0			OTAA	Class A	2 ×
			ClassB-AB	3P		0			ABP	Class A Class B	2 ×
鞜)			ClassB-OT	AA		0			OTAA	Class A Class B	2 ×
			ClassC-AE	BP		0			ABP	Class A Class C	2 ×
統・	· .		ClassC-OT.	AA		0			OTAA	Class A Class C	2 ×
			ClassCB-Al	BP		0			ABP	Class A Class B Class C	2 ×
₩ •			ClassCB-OT	TAA		0			OTAA	Class A Class B Class C	2 ×
			DR206ces	shi		0			ABP	Class A Class C	2 ×
pp 🕨			ceshi			0			OTAA	Class A Class C	2 ×
				图 1	8 建	マ Prof	iles				

- (1) Profiles 参数设置:
- (2) 名称: 自定义

- (3) 最大输出功率: 默认 0 即可
- (4) 入网方式: OTAA
- (5) 工作方式: 勾选 Class C
- (6) 高级:勾选进行配置 RX2,只配置 RX2 速率与 RX2 信道频率即可(CN470,速率配置 DR0,频段选择 505300000Hz),其他的可以保持默认。
- (7) 点击保存, Profiles 建立完成

最大輸出功率 入网方式 工作方式	0 OTAA V	
入网方式 [工作方式 🛛	OTAA 🗸	1
工作方式		
	🛛 Class A 🗌 Class B 🔽 Clas	s C
高级	2	
MAC Version	1.0.2 🗸	
区域参数修正	в 🗸	
RX1速率偏移量	0 🗸	
RX2速率	DR0 (SF12, 125kHz) 🗸	
RX2信道频率	505300000	Hz
频率表		Hz
设备信道		
ClassC ACK超时时间	10	se

5.3.1.2. 节点设备添加

状态	常规设置	应用	载荷编解码器	Profiles	设备	组播列表	网关	数据流	
Packet Forwarder	设备								
Network Server	添加	批量导入	删除所有						
	ម	遙名称	设备	EUI		设备配置文件		应用程序	茅
070034046								没有找到匹配的记录	atv.

图 20 USR-LG280 添加节点设备

- (1) 设备名称: 自定义, 同一个网关下的设备名称不可重复
- (2) 描述: 自定义
- (3) 设备 EUI: 填写节点设备 EUI
- (4) 设备配置文件:选择网关上所创建的 Profiles,这里我们选择上面建立的 OTAA 入网的 Profiles.
- (5) 应用程序:选择网关上所创建的且设备所要加入的应用,用于使用应用服务器的方式
- (6) 载荷编解码器:选择设备的载荷编解码器,无需在网关解码选择 None
- (7) fPort:设置设备的端口字段,我司设备端口号为10,这里填写10
- (8) 应用程序密钥: OTAA 入网使用的节点应用程序密钥(Appkey), 查看节点进行填写。

设备名称	DR206-CN470
描述	test
设备EUI	B5EE80B732FFF736
设备配置文件	test
应用程序	MQTT
載荷编解码器	None
Port	10
贞计数检验	
用程序秘钥	6db75bc1b8e69e5b2e6b3230
备地址	
网络会话秘钥	
应用程序会话秘钥	
上行帧计数 (ABP)	0
下行帧计数 (ABP)	0

图 21 设备添加图示

经过上面建立 Profiles、添加节点设备两步骤, 节点上电后从网关可以看到已经激活。

状态	常规设置	应用	载荷编解码器	Profiles	设备	組織列表	网关	数据流				
Packet Forwarder	设备											
Network Server	添加	批量导入	建筑 的所有5									滚索 0
		设备名称		设备	EUI		设备配置文件	\$	应用程序	最新更新时间	是否激活	操作
物以集成・	C	DR206-CN470		B5EE80B73	32FFF736		test		MQTT	59 minutes ago	~	

图 22 设备添加激活示意图

5.4. ABP 入网

ABP 激活模式,绕过入网交互流程直接加入 LoRaWAN 网络进行数据通信。

5.4.1. 配置节点设备入网

每个节点设备出厂已配置 EUI, DevAddr、NwkSkey 和 AppSkey 需要用户使用上位机或者 AT 指令配置,同一网络下的节点建议保持不同的数值。

5.4.1.1. 网关建立 Profiles

状态		常规设置	应用	载荷编解码器	Profiles	设备	組播列表	网关	数据流			
Packet Forwarder		Device Profiles										
Network Server				名相	£		最大输出功率			入同方式	工作方式	操作
				ClassA-	ABP		0			ABP	Class A	2 ×
协议集成	•			ClassA-0	AAT		0			OTAA	Class A	$\mathbb{Z}[\times]$
				ClassB-	ABP		0			ABP	Class A Class B	$[\ell] \times$
网络	•			ClassB-0	AATO		0			OTAA	Class A Class B	
				ClassC-	ABP		0			ABP	Class A Class C	
系統	•			ClassC-4	AATO		0			OTAA	Class A Class C	
				ClassCB	-ABP		0			ABP	Class A Class B Class C	
鄉护	•			ClassCB-	OTAA		0			OTAA	Class A Class B Class C	
				DR2060	eshi		0			ABP	Class A Class C	$\mathbb{Z}[\times]$
APP	•			cest	i		0			OTAA	Class A Class C	

图 23 建立 Profiles

- (1) Profiles 参数设置:
- (2) 名称: 自定义
- (3) 最大输出功率: 默认 0 即可
- (4) 入网方式: ABP
- (5) 工作方式: 勾选 Class C
- (6) 高级:勾选进行配置 RX2,只配置 RX2 速率与 RX2 信道频率即可(CN470,速率配置 DR0,频段选择 505300000Hz),其他的可以保持默认。
- (7) 点击保存, Profiles 建立完成。

名称	test1	
最大輸出功率	0	
入网方式	ABP	~
工作方式	Class A 🗌 Class B 🗍	Cla
高级		
MAC Version	1.0.2	~
区域参数修正	В	~
RX1速率偏移量	0	~
RX2速率	DR0 (SF12, 125kHz)	~
RX2信道频率	505300000	
频率表		
		_

5.4.1.2. 节点设备添加

状态	常规设置	应用	戰荷綱解码器	Profiles	设备	组播列表	网关	数据流
Packet Forwarder	设备							
Network Server	添加	批量导入	删除所有					
	ì	设备名称	设备日	EUI		设备配置文件		应用程序
が以集成 ・								没有找到匹配的记录
1988 CS								

图 25 USR-LG280 添加节点设备

- (1) 设备名称: 自定义, 同一个网关下的设备名称不可重复
- (2) 描述: 自定义
- (3) 设备 EUI: 填写节点设备 EUI
- (4) 设备配置文件:选择网关上所创建的 Profiles,这里我们选择上面建立的 ABP 入网的 Profiles.
- (5) 应用程序:选择网关上所创建的且设备所要加入的应用,用于使用应用服务器的方式
- (6) 载荷编解码器:选择设备的载荷编解码器,无需在网关解码选择 None
- (7) fPort:设置设备的端口字段,我司设备端口号为10,这里填写10
- (8) 设备地址: DevAddr, 根据节点设置的参数进行填写
- (9) 网络会话密钥: Nwkskey, 根据节点设置的参数进行填写
- (10) 应用程序会话密钥: Appskey, 根据节点设置的参数进行填写
- (11) 应用程序密钥: OTAA 入网使用的节点应用程序密钥(Appkey), 查看节点进行填写。

设备名称	DR206-CN470
描述	ceshi1
设备EUI	B5EE80B732FFF736
设备配置文件	test1 ·
应用程序	MQTT
载荷编解码器	None
fPort	10
帧计数检验	
设备地址	12345678
网络会话秘钥	7db75bc1b8e69e5b2e6b3230c
应用程序会话秘钥	8db75bc1b8e69e5b2e6b3230c
上行帧计数 (ABP)	0
下行帧计数 (ABP)	0

图 26 设备添加图示

经过上面建立 Profiles、添加节点设备两步骤, 节点上电后从网关可以看到已经激活。

状态	常规设置	应用	载荷编解码器	Profiles	设备	組織列表	网关	数据流					
Packet Forwarder	设备												
Network Server	动动	批量导入	影的所有									按京	Q,
11 10 10 - 0		设备名称		设备	EUI		设备配置文件	ŧ	应用程序	最新更新时间	是否激活	操作	
101034086		DR206-CN470		B5EE80B73	32FFF736		test1		MQTT	20 seconds ago			

图 27 设备添加激活示意图

5.5. 网关与节点数据通讯调试

通过以上几个步骤的设置与建立,基本上 LORAWAN 网络已经建成,接下来通过节点上报、服务器下发、组播三中数据传输模式进行展示。

5.5.1. 节点上报

使用 OTAA 入网方式、8-15 频段、开启 ADR、MQTT 服务器进行数据传输。LoRaWAN 射频参数设置、入网配置、应用服务配置、 节点添加与激活可以参考前面介绍。

节点设备配置参数内容:

设备信息:	EUI:	B5EE80B732	FF736	固件版本:	V1.0.3.000000.0000	
本参数						
频的	毁选择:	CN470				
LoRaWAN入	网配置:					
	CLASS:	CLASS C	~	入网模式:	OTAA ~	
7	网热启动:	Оπ	O ¥	AppEUI:	1234567890123456	
4	АррКеу:	6DB75BC1B8	E69E5B2E6B3230	C4E15315 DevEUI:	B5EE80B732FFF736	
速率/频段配置	:					
	ADR:	● 开	O ¥			
RX1:	速率:	DR4	~	频段:	8 15	
ì	東率范围:	DR0	~	DR5	~	
RX2:	速率:	DR0	~	频段:	505300000	
工作模式:						
	ACK数据:	CONFIRM	~	数据重传次数:	0 ~	
	LBT:	О Л	◉ 关	超时无数据重启:	○开 ◉关	43200
串口设置・						
тнқа	波特率:	115200	~	校验/数据/停止: NOM	IE ~ 8 ~ 1 ~	
			E 10	井上会新司목		

网关配置情况

射频信道设置							
频段			CN470	~	• 苗住飘潮		
		名称				中心频率/MHz	
		Radio 0				472.3	
		Radio 1				472.9	
多信道设置							
	启用	序号	射换	连路			频率/MHz
		0	Radio 0	~		471.9	
		1	Radio 0	~		472.1	
		2	Radio 0	~		472.3	
		3	Radio 0	~		472.5	
		4	Radio 1	~		472.7	
		5	Radio 1	~		472.9	
		6	Radio 1	~		473.1	
		7	Radio 1	~		473.3	
LoRa信道设置							
	启用	射频链路	频率/MHz		带宽/kHz		数据速率
		Radio 0 🗸	472.1	12	SKHZ ¥		SF7 🗸

图 29 射频配置

状态	常规设置	应用	载荷编解码器	Profiles	设备	组播列表	网关	数据流	
Packet Forwarder	描述		mqtt						
Network Server									
协议集成	类型 状态	e	MQTT B连接	~					
网络	常規								
系統	MQTT服务器地址		1883						
#的 •	客户纳D		www.usr.cn						
арр 🔸	法接起时时间 保测间路		30 60	=					
	│用户先证								
	启用		1:						
	TLS								
	启用	C	i.						
	主題								
			数据类型					主题	
			Uplink data					/usr/uplink	QoS 0 🗸
			Downlink da	ta				/usr/downlink/\$deveui	QoS 0 🗸
			Multicast downlin	k data				/usr/mult_downlink/001	QoS 0 👻

图 30 应用配置 常规设置 应用 载荷编解码器 Profiles

名称	test	
最大輸出功率	0	
入网方式	OTAA	~
工作方式	🗹 Class A 🗌 Class B	Clas
高级		
MAC Version	1.0.2	~
区域参数修正	В	~
RX1速率偏移量	0	~
RX2速率	DR0 (SF12, 125kHz)	~
RX2信道频率	505300000	
频率表		
设备信道		

图 31 Profiles 配置

设备名称	WH-L101-CN470				
描述	ceshi				
设备EUI	B5EE80B732FFF736				
设备配置文件	test				
应用程序	MQTT				
载荷编解码器	None				
fPort	10				
帧计数检验					
应用程序秘钥	6db75bc1b8e69e5b2e6b3230c				
设备地址	06038eff				
网络会话秘钥	a6d1bff115454a1ed76dac934a				
应用程序会话秘钥	aced23f305fa64d68ced8ec5454				
上行帧 <mark>计数 (ABP)</mark>	3				
下行帧计数 (ABP)	5				

通信测试:

节点发送 ASCII 数据"123", MQTT 服务器收到数据如下:

Publish Subscribe Scripts Br	roker Status Log				
/usr/uplink	▼ Subscribe			Qu., Qu., Qu.,	Autoscroll Of
/usr/uplink		Dumo Messares	Mute Unsubscribe	/usr/uplink	QoS C
				/usr/uplink	QoS C
				/usr/uplink	
				03-09-2024 19:07:43.68863848	QoS C
				{"applicationID":"2","applicationName":"mqtt","data":"MTIz","devEUI":"b5ee80b732fff736","deviceName":"WH- nt":6,"fPort":10,"rxInfo":[{"altitude":0,"latitude":0,"loRaSNR":10.8,"longitude":0,"mac":"24e124fffefaSe5 cal	L101-CN470,"fC e","name":"Lo
Topics Collector (0)			Scan Stop OC+	Gateway","rssi":-39,"time":"2024-09-03T11:07:42.3848722"}],"time":"2024-09-03T11:07:42.3848722","txlnfo": codeRate":"4/5","dataRate":{"bandwidth":125,"modulation":"LORA","spreadFactor":?},"frequency":473300000}}	{"adr":true,"

图 32 设备添加激活

图 33 MQTT 收取数据

服务器接收数据内容:

{"applicationID":"4","applicationName":"MQTT","data":"MTIz","devEUI":"b5ee80b732fff736","deviceName":"WH-L101-CN470",
"fCnt":4,"fPort":10,"rxInfo":[{"altitude":0,"latitude":0,"loRaSNR":13.5,"longitude":0,"mac":"24e124fffefa5e5e","name":"Local
Gateway","rssi":-40,"time":"2024-08-20T12:43:58.987574Z"}],"time":"2024-08-20T12:43:58.987574Z","txInfo":{"adr":true,"cod
eRate":"4/5","dataRate":{"bandwidth":125,"modulation":"LORA","spreadFactor":7},"frequency":472500000}}
其中: "data":"MTIz", MTIz 为本次收到的节点数据,显示为 Base 64 格式,转换为 ASCII 为: 123。
内容解析如下:

{

"applicationID":"1", // 应用 ID "applicationName":"cloud", // 应用名称 "deviceName":"24e1647092176759",// 设备名称 "devEUI":"24e1647092176759", // 设备 EUI "rxInfo": [{

"mac":"24e124fffef021be", // 网关 ID

```
"rssi":-57, // 信号强度 (dBm)
"loRaSNR":10, // 信噪比
"name":"local_gateway", // 网关名称
"latitude":0, // 网关经度
"longitude":0, // 网关纬度
"altitude":0 // 网关海拔
}],
"txInfo": // 节点信息
{
"frequency":868300000, // 使用频率
"dataRate":
{
"modulation":"LORA", // LORA 调制
"bandwidth":125, // 带宽
"spreadFactor":7 // 扩频因子
}
,"adr":false, // 设备 ADR 状态
"codeRate":"4/5" // 编码率
},
"fCnt":0, // 帧计数
"fPort":85, // 应用端口
"data":"AWcAAAJoAA==", // base64 编码 (已解密)
}
5.5.2. 服务器下发
```

节点在网关添加与激活如上章节,使用 MQTT 服务器下发数据到节点设备串口输出。

● 通信测试:

MQTT 发布主题:/usr/downlink/B5EE80B732FFF736;发送数据: {"confirmed":true,"fport":10,"data":"MTIzNDU="};节点串口 输出: 12345

有关发布主题,发布数据格式请参考 5.2.1.2 服务器下发数据章节

Publish	Subscribe	Scripts	Broker Statu	ıs Log		
			»	/usr/downlink/B5EE80B732FFF736	•	Publish
			f	"confirmed":false,"fport":10,"data":"MTIzNDU='	'}	
			图 34 2024-08- [RX]:123 2024-08- [RX]:123 2024-08- [RX]:123	MQTT 发送数据 -21,17:16:02:375: 45 -21,17:16:12:473: 45 -21,17:18:03:280: 45		

5.5.3. 组播

组播功能是一种 点到多点通信方式,能够提高通信效率和数据发散,网关发送一次消息,能够传送给多个节点接收,达到批量管理 的效果,在使用组播功能之前需要保证节点已经在网关添加激活,可以参考前几章节。

● 节点设置:

上位机高级设置中组播打开,选择组号、设置组播地址(4 字节)、APPSKEY(组播应用程序会话秘钥,16 字节)、NWKSKEY(组播网络会话秘钥,16 字节)。

	▶ 进入配置状态	 读取参数 试	₿ 2 2 2 3 4 5 4 5 4 5 5 4 5	く 出配置状态	▲ 5. 固件升线	及 设备	◆ ① 型号选择 关于	+		
设备信息:	EUI:	B5EE80E	732FFF736		固	件版本:	V1.0.3.000000.0	0000		
基本参数										
速率/频段配置	置:									
	ADR:	◉ 开	O¥							
RX1:	速率:	DR4	~		频	殿:	8 1	15		
	速率范围:	DRO	~		DF	R5	~			
RX2:	速率:	DRO	~		频	暇:	505300000			
-										
工作模式:										
	ACK数据:	CONFIRM	1 ~		数据重传》	(数:	0	~		
	LBT:	О开	● 关		超时无数据重	启:	О Я ●	关 43200		
串口设置:										
	波特率:	115200	~	树	金 /数据/ 停止:	NONE	~ 8 ~	1 ~		
☑ 高级设置:										
	心跳包:	ОŦ	⊛¥	时间;	300	s	数据格式:		心跳内容:	
		0,1	0					1		
	组播:	● 开	0 X	组号:	0	~	组播地址:	12345678	APPSKEY:	111111111111111111111111111111111111111
w		0 ≖	@ *							[]
\$X3	町▽湘川以り亚示:	Uπ	⋓大						NWKSKEY:	222222222222222222222222222222222222222
					图 36	节点	组播配置			

● 网关 NS 服务器添加组播任务,设置参数和节点对应。

状态	常规设置	应用	载荷编解码器	Profiles	设备	组播列表	网关	数据流
Packet Forwarder	组播列表							
Network Server	添加							
IL WILLIAM .			組播地址			组名		
が以集成・			12345678			厂区1		
网络			22222222			厂区2		
	显示第 1 到第 2 条	记录,总共 2 쇸	条记录					

图 37 组播任务添加

组名	1
组播地址	12345678
组播网络会话秘钥	222222222222222222222222222222222222222
组播应用程序会话秘钥	111111111111111111111111111111111111111
工作方式	Class C 👻
速率	DR0 (SF12, 125kHz)
频率	505300000 H
帧计数	16
已选设备	
添加设备	
	下拉选择设备▼
设备名称	EUI
DR206-CN470	B5EE80B732FFF736
	保存
图 38	组播信息设置

注意,组名只能设置数字和字母。

网关 NS 服务器设置组播参数需与节点设备一致, 配置好后点击保存。

- 通信测试
- (1) 通过网关下发组播数据:

状态	常规设置	应用	载荷编解码器	Profiles	设备	組織列表	网关	数据流		
Packet Forwarder	发送数据到设备	单节点数据	下行调试窗口	1						
		设备	EUI		类型				负载	端口
Network Server	0000000	000000000			ASCII	~	[10
协议集成 ▶										
网络	发送数据到组播	组播下发调	试窗口							
		维	8		类型				负载	端口
系统	1			~	ASCII	~	[123456		10
	10			1 20			ه			

图 39 网关端下发调试 2024-08-22,10:38:56:836: [RX]:123456

2024-08-22,10:41:59:492: [RX]:123456

2024-08-22,10:42:00:892: [RX]:123456

图 40 节点接收组播数据

(2) 通过 MQTT 服务器下发组播数据:

2024-08-22,10:50:00:230: [RX]:12345

2024-08-22,10:50:02:635: [RX]:12345

2024-08-22,10:50:04:038: [RX]:12345

图 42 节点接收数据

5.6. 固件升级

◆ 固件升级步骤

打开 LoRa 设置软件(选择 WH-L101)进入,打开串口,点击进入配置状态,手动输入 at+boot=usrwr,0 进入串口升级模式;或者模 组 Reload 引脚拉低后再上电,进入串口升级模式;再按照下图进行操作,图中序号依次对应以下 5 个步驟:

② 〕 [2] 关闭串口 进入配置状态 读取参数 设	● ▲ ① · · · · · · · · · · · · · · · · · ·	ок
ひ し し し し し し し し し し し し し	32FFF736 開始報告: (V1.0.3.00000.0000	2024-08-22,14:32:21:834: [TX]:AT+POWCFG?
频段选择: CN470	ела, ×	2024-08-22,14:32:21:968: [RX]:
LoRaWAN入网配置: CLASS: CL	口号· COM22 5 开始升级 7	+POWCFG:22,19,10,13,10,7,5,2
入网熱启动: 〇 【千代	路径, D:\有人物联网工作文件\LORA产品资料\\C 激览 6 6 6 6	2024-08-22,14:32:27:737: [TX]:at+boot=usrwr,0
AppKey: 60 1. 打 2、鼓 3、点	任 REDA 强,而改重工电 提和口导。周叶 开始升级,等待完成	2024-08-22,14:32:27:895: [RX]:boot_i jap is start
速率/頻段配置: 1.Plea 2.Sele ADR: @ 3.Pus	ite steps) se push [Reload] and repower ct seral port , FW path h [Start Update] button, Waiting for completion	2024-08-22,14:33:29:241: [RX]:USR-DR206-L0RaWAN-CN470 VFR:v1.0.3.000000.0000
RX1: 速率: Df 速率范围: Df		
RX2: 速率: DR0	tatus	✓ 滚动至最新清整 tt+boot=usrwr.0 2
工作模式: ACK数据: CONFIRM	1 - 数編集物次数: 0	
< 恢复出厂设置 重启	>	3

图 43 上位机固件升级

(1) 通过配置软件点击固件升级;

(2) 串口升级可能会导致参数恢复出厂设置,选择确定根据提示进行保存操作,保存完成后会自动弹出"固件升级"软件; 选择取消直接打开"固件升级"软件;

- (3) 选择对应的串口;
- (4) 打开提供的升级固件(*.hex);
- (5) 点击下载,等待下载完成即可;

串口书	号:	COM5	7		~			开始升级	
固件路征	준:			<u>, </u>			浏览	71/41/1924	
verifying	page	e/sector	16	@0x	8008000	size 2.00(KB)	[OK]		
verifying	page	e/sector	17	@0x	8008800	size 2.00(KB)	[OK]		
verifying	page	e/sector	18	@0x	8009000	size 2.00(KB)	[OK]		
verifying	page	e/sector	19	@0x	8009800	size 2.00(KB)	[OK]		
verifying	page	e/sector	20	@0x	800A000	size 2.00(KB)	[OK]		
verifying	page	e/sector	21	@0x	800A800	size 2.00(KB)	[OK]		
verifying	page	e/sector	22	@0x	800B000	size 2.00(KB)	[OK]		
verifying	page	e/sector	23	@0x	800B800	size 2.00(KB)	[OK]		
verifying	page	e/sector	24	@0x	800C000	size 2.00(KB)	[OK]		
verifying 升级成功	page	e/sector	25	@0x	800C800	size 1.91(KB)	[OK]		
Your code	e is rui	nning							
	_								
升级成功	1								

配套设置软件下载地址:

6. AT 指令介绍

- 6.1. AT 指令命令模式
- ◆ 进入配置的命令格式

模组上电启动成功后,在需要配置参数的情况下,需通过 UART 按照一定步骤进入到 AT 指令状态。

模块的缺省 UART 口参数为:波特率 115200、无校验、8 位数据位、1 位停止位。其他模式切换到 AT 指令模式步骤为:

- (1) 在 UART 上输入 "+++" , 模块在收到 "+++" 后会返回一个确认码 "a";
- (2) 在 UART 上输入确认码 "a",模块收到确认码后,返回 "+OK"确认,则成功进入 AT 指令模式;
 - 注: 模块进入指令模式需要按照如下图的时序要求:

6.2. AT 指令错误代码

返回代码	返回说明	备注
ОК	响应成功	
ERR-1	无效的命令格式	
ERR-2	无效的命令	
ERR-3	无效的操作符	
ERR-4	无效的参数	
ERR-5	操作不允许	

6.3. AT 指令格式

发送命令格式:以回车<CR>、换行<LF>或者回车换行<CR><LF>结尾

类型	指令串格式	说明	举例
0	AT+CMD? <cr><lf></lf></cr>	查询参数	AT+VER? <cr><lf></lf></cr>
1	AT+CMD <cr><lf></lf></cr>	查询参数	AT+VER <cr><lf></lf></cr>
2	AT+CMD=para <cr><lf></lf></cr>	设置参数	AT+CH=66 <cr><lf></lf></cr>

模块回复格式(关闭回显):

设置参数: <CR><LF><CR><LF>OK<CR><LF>

查询参数: <CR><LF> +CMD:PARA<CR><LF><CR><LF>OK<CR><LF>

CMD: 命令字

PARA: 参数

6.4. AT 指令集

序号	指令	说明					
		基本命令					
1	ENTM	退出 AT 命令					
2	E	模块 AT 命令回显设置					
3	Z	重启模块					
4	CFGTF	保存当前设置为默认设置					
5	RELD	恢复默认设置					
6	VER	模块固件版本					
7	AT+REGION	查询区域频段					
8	AT+LBT	设置/查询 信号干扰检测功能					
9	AT+ RFTO	设置/查询 无数据重启时间					
10	AT+FCHECK	设置/查询帧计数校验开关					
11	UART	设置/查询串口参数					
12	AT+CONFIRM	设置/查询上行链路的传输类型(是否确认 & 重传次数)					
13	AT+JOIN	设置/查询设备入网模式(入网方式 & 热启动)					
14	AT+KEEPALIVE	设置/查询保活的连续的 ACK 包阈值					
15	AT+HEARTCFG	设置/查询心跳功能参数					
16	AT+DEVEUI	设置/查询设备 EUI -供客户使用					
17	AT+APPEUI	设置/查询设备应用服务标识					
18	AT+APPKEY	设置/查询设备应用服务密钥					
19	AT+APPSKEY	设置/查询设备应用会话密钥(ABP)					
20	AT+NWKSKEY	设置/查询设备网络会话密钥(ABP)					
21	AT+DEVADDR	设置/查询设备入网地址(ABP)					
22	AT+MULTICAST	设置/查询组播组参数					
23	AT+PORT	设置/查询端口号					
24	AT+CLASS	设置/查询工作模式					
25	AT+RX2	设置/查询配置窗口 2					
26	AT+DATARATE	设置/查询配置窗口 1 传输速率					

27	AT+POWER	设置/查询配置窗口 1 发射功率等级
28	AT+POWCFG	设置/查询配置窗口 1 自定义发射功率表内容
29	AT+ADRCFG	设置/查询 自适应速率 ADR 参数
30	AT+INFO	设置/查询 交互成功标识<模组> <confirm></confirm>
31	AT+CHMASK	设置/查询入网信道

6.5. 指令详解

6.5.1. AT+ENTM

- 功能:退出命令模式,恢复原工作模式;
- ▶ 格式:
- ◆ 设置

AT+ENTM<CR><LF>

<CR><LF>OK<CR><LF>

▶ 参数:无

6.5.2. AT+E

- ▶ 功能:设置/查询 LoRa 数传终端 AT 命令回显设置
- ▶ 格式:
- ◆ 查询

AT+E <CR><LF>

<CR><LF>+E:<ON/OFF><CR><LF>OK<CR><LF>

◆ 设置

AT+E=<para><CR><LF><CR><LF>OK<CR><LF>

- ▶ 参数:para
- ◆ ON: 打开回显(默认),回显 AT 命令下输入的命令
- ◆ OFF: AT 命令模式下, 输入命令不回显。
- 注:本设置掉电不保存

6.5.3. AT+Z

- ▶ 功能:重启 LoRa 数传终端
- ▶ 格式:
- ◆ 设置

AT+Z<CR><LF>

<CR><LF>OK<CR><LF>

参数:无

该命令正确执行后, LoRa 数传终端重新启动。

6.5.4. AT+CFGTF

- 功能:复制当前配置参数为用户默认出厂配置;
- ▶ 格式:

- ◆ 设置
 - AT+CFGTF<CR><LF>

```
<CR><LF>+CFGTF:SAVED<CR><LF>OK<CR><LF>
```

- ▶ 参数:
- ◆ SAVED:保存成功
- 6.5.5. AT+RELD
- ▶ 功能:恢复 LoRa 数传终端配置参数为用户出厂配置参数
- ▶ 格式:
- ◆ 设置

AT+RELD<CR><LF>

<CR><LF>REBOOTING<CR><LF>

◆ 参数:无

该命令将 LoRa 数传终端配置参数恢复到用户出厂设置,然后自动重启。

6.5.6. AT+VER

- ▶ 功能:查询 LoRa 数传终端固件版本
- ▶ 格式:
- ♦ 查询

AT+VER<CR><LF>

<CR><LF>+VER:<ver><CR><LF>OK<CR><LF>

▶ 参数:

ver:固件版本

6.5.7. AT+REGION

- ▶ 功能:查询设备使用的区域频段
- ▶ 格式:
- ◆ 查询

AT+REGION<CR><LF>

<CR><LF>+REGION:<para><CR><LF>OK<CR><LF>

▶ 参数:

<para>:CN470、、AU915

6.5.8. AT+LBT

- 功能:设置/查询信号干扰检测功能
- ▶ 格式:

◆ 查询:

AT+LBT<CR><LF>

<CR><LF>+LBT:<para><CR><LF>OK<CR><LF>

◆ 设置:

AT+LBT=<para><CR><LF>

<CR><LF>OK<CR><LF>

▶ 参数:

<para>:ON/OFF

6.5.9. AT+RFTO

- 功能:设置/查询 无数据重启时间
- ▶ 格式:
- ◆ 查询:

AT+RFTO<CR><LF> <CR><LF>+RFTO:<para><CR><LF>OK<CR><LF>

▶ 设置: AT+RFTO=<para><CR><LF>

<CR><LF>OK<CR><LF>

▶ 参数:

<para>: 300-86400s 默认 43200s;0 关闭该功能

6.5.10. AT+FCHECK

- ▶ 功能:设置/查询帧计数校验开关
- ▶ 格式:
- ◆ 查询:

AT+FCHECK<CR><LF> <CR><LF>+FCHECK:<para><CR><LF>OK<CR><LF>

- ◆ 设置: AT+FCHECK=<para><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

ara>: 功能开关 默认: OFF;可选择 ON、OFF

6.5.11. AT+UART

- ▶ 功能:设置/查询串口参数
- ▶ 格式:
- ◆ 查询:

AT+UART<CR><LF>

<CR><LF>+UART:<para1>,<para2>,<para3>,<para4><CR><LF>OK<CR><LF>

◆ 设置:

AT+UART=<para1>,<para2>,<para3>,<para4><CR><LF>

<CR><LF>OK<CR><LF>

▶ 参数:

<para1>:波特率: 1200-115200(默认)

<para2>:数据位:8(默认)、7

<para3>:停止位:1(默认)、2

<para4>:校验位: NONE(默认)、ODD、EVEN

- 6.5.12. AT+CONFIRM
- ▶ 功能:设置/查询上行链路的传输类型(是否确认&重传次数)

▶ 格式:

```
◆ 查询:
AT+CONFIRM<CR><LF>
<CR><LF>+CONFIRM:<status>,<status2><CR><LF>OK<CR><LF>
```

```
▶ 设置:
AT+CONFIRM=<status1>{{,<status2>}}<CR><LF>
<CR><LF>OK<CR><LF>
```

▶ 参数:

```
<status1>: 上行传输确认类型 (default: 0)
```

- 0 UnConfirmed message
- 1 Confirmed message

<status2>: 传输次数 (default: 0)

```
取值范围(整数): 0~15
```

注: {{,<status2>}}表示可以不包含当前参数,若配置该参数时格式如下

AT+XXX=<status1>,<status2>

```
设置<status2>时,当且仅当 status1==1 时,会生效
```

```
6.5.13. AT+JOIN
```

- 功能:设置/查询设备入网模式(入网方式 & 热启动)
- ▶ 格式:
- ◆ 查询: AT+JOIN<CR><LF> <CR><LF>+JOIN:<status1>,<status2><CR><LF>OK<CR><LF>
- ◆ 设置:

AT+JOIN=<status1>,<status2><CR><LF><CR><LF>OK<CR><LF>

▶ 参数:

<status1>: 设备入网模式 (default: OTAA)

OTAA/ABP

```
<status2>: 入网热启动模式 (default: OFF)
```

OFF/ON

6.5.14. AT+KEEPALIVE

- ▶ 功能:设置/查询保活的连续的 ACK 包阈值
- ▶ 格式:
- ◆ 查询: AT+KEEPALIVE<CR><LF> <CR><LF>+KEEPALIVE:<status1><CR><LF>OK<CR><LF>
- ◆ 设置: AT+KEEPALIVE=<status1><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

<status1>: ACK 包数阈值 (default 32);阈值范围: 1~255

6.5.15. AT+HEARTCFG

- ▶ 功能:设置/查询心跳功能参数
- ▶ 格式:

```
◆ 查询:
```

AT+HEARTCFG<CR><LF>

<CR><LF>+HEARTCFG:<status1>,<status2>,<status3>,<status4><CR><LF>OK<CR><LF>

```
◆ 设置:
```

AT+KEEPALIVE=<status1>,<status2>,<status3>,<status4><CR><LF><CR><LF>OK<CR><LF>

▶ 参数:

<status1>: 功能开关 (default OFF)

ON - 开启

OFF - 关闭

<status2>: 心跳周期 _s (default: 300)

取值范围: 30~65535

<status3>: 心跳内容类型

HEX/hex

ASCII/ascii

<status4>: 心跳内容

根据<status3>内容输入 (实际内容最长 50 字节, 最小1个字节)

==hex: ascii 表示 hex 值

指令长度范围 2~100(长度为 2 的倍数)

==ascii:

指令长度范围 1~50

6.5.16. AT+DEVEUI

- ▶ 功能: 设备 EUI
- ▶ 格式:
- ◆ 查询:
 - AT+DEVEUI<CR><LF>

<CR><LF>+DEVEUI:<status1><CR><LF>OK<CR><LF>

◆ 设置:

AT+DEVEUI=<status1><CR><LF> <CR><LF>OK<CR><LF>

▶ 参数:

<status1>: 设备唯一标识符 (default: MES 系统生成)

xxxxxxxxxxxxxxxxx : 注意没有空格

注意:长度 8 字节(格式为 hex)

6.5.17. AT+APPEUI

- 功能:设置/查询设备应用服务标识
- ▶ 格式:

- ◆ 查询: AT+APPEUI<CR><LF> <CR><LF>+APPEUI:<status1><CR><LF>OK<CR><LF>
- ◆ 设置: AT+APPEUI=<status1><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

<status1>: 设备应用服务标识(default: 00000000000000)

Xxxxxxxxxxxxxxx: 注意没有空格

注意:长度8字节(格式为 hex)

6.5.18. AT+APPKEY

- 功能:设置/查询设备应用服务密钥
- ▶ 格式:
- ◆ 查询:

AT+APPKEY<CR><LF> <CR><LF>+APPKEY:<status1><CR><LF>OK<CR><LF>

◆ 设置:

AT+APPKEY=<status1><CR><LF> <CR><LF>OK<CR><LF>

▶ 参数:

注意: 长度 16 字节 (格式为 hex)

6.5.19. AT+APPSKEY

- ▶ 功能:设置/查询设备应用会话密钥(ABP)
- ▶ 格式:
- ◆ 查询:
 - AT+APPSKEY<CR><LF> <CR><LF>+APPSKEY:<status1><CR><LF>OK<CR><LF>
- ▶ 设置: AT+APPSKEY=<status1><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

注意:长度 16 字节(格式为 hex)

```
6.5.20. AT+NWKSKEY
```

- ▶ 功能:设置/查询设备网络会话密钥(ABP)
- ▶ 格式:
- ◆ 查询:

```
AT+NWKSKEY<CR><LF>
```

<CR><LF>+NWKSKEY:<status1><CR><LF>OK<CR><LF>

◆ 设置:

AT+NWKSKEY=<status1><CR><LF> <CR><LF>OK<CR><LF>

▶ 参数:

注意:长度 16 字节(格式为 hex)

6.5.21. AT+DEVADDR

- ▶ 功能:设置/查询设备入网地址(ABP)
- ▶ 格式:
- ◆ 查询: AT+DEVADDR<CR><LF> <CR><LF>+DEVADDR:<status1><CR><LF>OK<CR><LF>
- ◆ 设置:

AT+DEVADDR=<status1><CR><LF> <CR><LF>OK<CR><LF>

▶ 参数:

<status1>: 设备应用服务标识(default: 0000000))

xxxxxxxx: 注意没有空格

注意:长度4字节(格式为 hex)

6.5.22. AT+MULTICAST

- 功能:设置/查询组播组参数
- ▶ 格式:
- ◆ 查询:

```
AT+MULTICAST<CR><LF>
<CR><LF>+MULTICAST:0,<status2>,<addr0>,<mc0_appskey>,<mc0_nwkskey>
1,<status2>,<addr1>,<mc1_appskey>,<mc1_nwkskey>
2,<status2>,<addr2>,<mc2_appskey>,<mc2_nwkskey>
3,<status2>,<addr3>,<mc3_appskey>,<mc3_nwkskey>OK<CR><LF>OK<CR><LF>
```

◆ 设置:

AT+MULTICAST=<status1>,<status2>{{,<addr>,<mc_appskey>,<mc_nwkskey>}}<CR><LF><CR><LF>OK<CR><LF>

▶ 参数:

<status1>: 组号 【0】 【1】 【2】【 3】

<status2>: 组播组开关 0: OFF 1: ON<addr>: 组播组地址

长度 4 字节(格式为 hex) (使用 ascii 描述: 8 字节长)

<mc_appskey>: 组播组应用会话秘钥

长度 16 字节(格式为 hex) (使用 ascii 描述: 32 字节长)

<mc_nwkskey>: 组播组网络会话秘钥

长度 16 字节(格式为 hex) (使用 ascii 描述: 32 字节长)

注意: {{,<addr>,<mc_appskey>,<mc_nwkskey>}}

表示可以不包含当前参数

6.5.23. AT+PORT

- ▶ 功能:设置/查询端口号
- ▶ 格式:
- ◆ 查询: AT+PORT<CR><LF> <CR><LF>+PORT:<para1><CR><LF>OK<CR><LF>
- ▶ 设置: AT+PORT=<para1><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

<para1>:表示入网信道的起始标号,范围: 1-223

6.5.24. AT+CLASS

- 功能:设置/查询工作模式
- ▶ 格式:
- ◆ 查询:

AT+CLASS<CR><LF> <CR><LF>+CLASS:<para1><CR><LF>OK<CR><LF>

▶ 设置: AT+CLASS=<para1><CR><LF>

<CR><LF>OK<CR><LF>

▶ 参数:

<para1>:表示工作模式,0:CLASS A、1:CLASS B、2:CLASS C

6.5.25. AT+RX2

- ▶ 功能:设置/查询配置窗口2
- ▶ 格式:
- ◆ 查询:

AT+RX2<CR><LF> <CR><LF>+RX2:<para1>,<para2><CR><LF>OK<CR><LF>

- ◆ 设置: AT+RX2=<para1>,<para2><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

<para1>:表示 RX2 的速率 0-5 默认: DR5 (SF7 BW125)

- 0 DR0 (SF12 BW125)
- 1 DR1 (SF11 BW125)
- 2 DR2 (SF10 BW125)
- 3 DR3 (SF9 BW125)
- 4 DR4 (SF8 BW125)
- 5 DR5 (SF7 BW125)

<para2>:表示 RX2 的频率,默认: 501700000

6.5.26. AT+DATARATE

- 功能:设置/查询配置窗口 1 传输速率
- ▶ 格式:

```
查询:
AT+DATARATE<CR><LF>
<CR><LF>+DATARATE:<para1>,<min>,<max><CR><LF>OK<CR><LF>
```

```
◆ 设置:
```

AT+DATARATE=<para1>,{{<min>,<max>}}<CR><LF><CR><LF>OK<CR><LF>

▶ 参数:

<para1>: 表示 RX1 的速率 (default: 5)

- 0 DR0 (SF12 BW125)
- 1 DR1 (SF11 BW125)
- 2 DR2 (SF10 BW125)
- 3 DR3 (SF9 BW125)
- 4 DR4 (SF8 BW125)
- 5 DR5 (SF7 BW125)

```
<min>: 0~5 ( default: 0 )
```

```
<max>:0~5 ( default: 5 )
```

```
注意:
```

设置参数时, min 和 max 可不设置, 只设置第一个参数即可。

min <= max、min <= para1 <= max</pre>

0<=min<=5、0<=max<=5;

6.5.27. AT+POWER

- 功能:设置/查询配置窗口 1 发射功率等级
- ▶ 格式:
- ◆ 查询:

AT+POWER<CR><LF> <CR><LF>+POWER:<enlist>,<power>,<max>,<min><CR><LF>OK<CR><LF>

◆ 设置:

AT+POWER=<enlist>,<power>,<max>,<min><CR><LF><CR><LF>OK<CR><LF>

▶ 参数:

<enlist>: 自定义功率表使能

OFF: 使用标准协议功率, 其最大功率为 17dBm

ON: 使用自定义功率表

<power>: 表示默认 tx 功率 (default: 0 - 最大值)

0 - 7

<max>: 表示 tx 最大功率 (default: 0)

```
0 - 7
```

<min>: 表示 tx 最小功率 (default: 7)

0 - 7

注意: min >= power&&max <= power

min >= max

```
6.5.28. AT+POWCFG
```

- 功能:设置/查询配置窗口 1 自定义发射功率表内容
- ▶ 格式:
- ◆ 查询:

AT+POWCFG<CR><LF>

<CR><LF>+POWCFG:<power0>,<power1>,<power2>,<power3>,<power4>,<power5>,<power6>,<power7><CR><LF>OK<C R><LF>

◆ 设置:

AT+POWCFG=<power0>,<power1>,<power2>,<power3>,<power4>,<power5>,<power6>,<power7><CR><LF><CR><LF>OK<CR><LF>

▶ 参数:

```
<power0>: 功率表内最大功率, 【范围: 22~9】
```

可以仅配置该内容,无后续参数配置时,后续内容逐级减 2,范围【22~16】

<power1>: 【范围 21~8】

- <power2>: 【范围 20~7】
- <power3>: 【范围 19~6】
- <power4>: 【范围 18~5】
- <power5>: 【范围 17~4】
- <power6>: 【范围 16~3】

<power7>: 功率表内最小功率, 【范围 15~2】

注意: <power0~7>: power0 到 7 逐级减小

配置指令个数只能为 1,8

6.5.29. AT+ADRCFG

- ▶ 功能:设置/查询 自适应速率 ADR 参数
- ▶ 格式:
- ◆ 查询:

AT+ADRCFG<CR><LF> <CR><LF>+ADRCFG:<para1>,<para2>,<para3><CR><LF>OK<CR><LF>

◆ 设置:

AT+ADRCFG=<para1>,<para2>,<para3><CR><LF><CR><LF>OK<CR><LF>

▶ 参数:

<para1>:ON/OFF 使能/不使能 默认:使能 --用于非确认帧的调速

<para2>: ADR_ACK_LIMIT 默认为 64 范围: 1-65535

<para3>: ADR_ACK_DELAY 默认为 32 范围: 1-65535

- 6.5.30. AT+INFO
- ▶ 功能:设置/查询 交互成功标识<模组><Confirm>

- ▶ 格式:
- ◆ 查询: AT+INFO<CR><LF> <CR><LF>+INFO:<param><CR><LF>OK<CR><LF>
- ▶ 设置: AT+INFO=<param><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

<param>: 交互成功标识开关, ON/OFF

限制条件

模组(后期区分)

仅用于 port0 的交互数据提示功能

包括 MAC 交互, 入网信息, ACK

6.5.31. AT+CHMASK

- ▶ 功能:设置/查询入网信道
- ▶ 格式:
- ◆ 查询:

AT+CHMASK<CR><LF> <CR><LF>+CHMASK:<para1>,<para2><CR><LF>OK<CR><LF>

→ 设置: AT+CHMASK=<para1>,<para2><CR><LF>

<CR><LF>OK<CR><LF>

▶ 参数:

<para1>:表示入网信道的起始标号,范围:0-95

<para2>:表示入网信道的结束标号,范围:0-95

注意:

最多设置 8 个信道,如: AT+CHMASK=0,7 表示使能信道 0-7【CH0-CH7】

最少可设置为1个信道,如:AT+CHMASK=0,0表示使能信道0【CH0】

其中 para1<para2、para2-para1<=7

6.5.32. AT+CHMASK (915MHz)

- ▶ 功能:设置/查询入网信道
- ▶ 格式:
- ◆ 查询: AT+CHMASK<CR><LF> <CR><LF>+CHMASK:<para1>,<para2><CR><LF>OK<CR><LF>
- ◆ 设置: AT+CHMASK=<para1>,<para2><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

<para1>:表示入网信道的起始标号,范围:0-63

<para2>:表示入网信道的结束标号,范围:0-63

注意:

最多设置 8 个信道,如: AT+CHMASK=0,7 表示使能信道 0-7 [CH0-CH7] 最少可设置为 1 个信道,如: AT+CHMASK=0,0 表示使能信道 0 [CH0] 其中 para1<para2、para2-para1<=7

6.5.33. AT+DWELL

(限 L101-AU915 使用)

- ▶ 功能:设置/查询窗口 1 链路停留开关
- ▶ 格式:
 - 查询: AT+DWELL<CR><LF> <CR><LF><datarate_limit>,<updwell>,<downdwell><CR><LF>OK<CR><LF>
- ♦ 设置: AT+DWELL=<datarate_limit>,<updwell>,<downdwell><CR><LF> <CR><LF>OK<CR><LF>
- ▶ 参数:

<datarate_limit>

开启停留时间下的速率极限值 default:2, <0-5>

<updwell>

上行停留时间配置 default:0, <0, 1>

<downdwell>

下行停留时间配置 default:0, <0, 1>

7. 常见问题

7.1. WH-L101 设备支持的 LoRaWAN 协议

目前支持 LoRaWAN 1.0.3 协议

7.2. WH-L101 设备能够支持的频段和对应地区

产品型号	支持频段	适合地区	备注
WH-L101-CN470	470-510MNz	中国	
WH-L101-AU915	915-928MHz	澳洲、南美洲	US915、AS923-1/2/3/4、KR920,
			可联系技术支持或者销售咨询定制

注:US915:美国;AS923-1:东南亚(如日本、泰国、越南、马来西亚、台湾、香港、新西兰等);AS923-2:韩国、印度尼西亚、奥地利等;AS923-3:印度、 孟加拉国、斯里兰卡等;KR920:韩国.

7.3. 节点设备添加到 NS 服务器之后无法激活?

(1) 如果是使用的网关内 NS 服务器节点与网关的步骤参考本说明书相关介绍,检查是否设置参数异常,另外查看网关内置 NS 是否添加 网关,如下。

状态	1	常规设置	应用	載荷编解码器	Profiles	设备	细瘤列表	网关	数据高			
Packet Forwarder	I F	咲										
Natwork Sarvar			同关ID				名称			秘密	最近更新时间	· 提升作
			24E124FFFEFA	5E5E			本机网关			已连接	2024-08-23 07:46:24	$\mathbb{Z} \times$
协议集成	•											

(2) 如果是使用的其他网关或者外置 NS 服务器,基本的参数相似,具体的设置方式建议查阅对方产品说明。

7.4. 节点设备工作在 Class C 模式下,无法从 RX2 接收下行数据

请检查模组端的 RX2 数据速率,通信频率是否与 NS 端匹配

- 7.5. 节点设备从 OTAA 切换 ABP,设置 devaddr,复位后不生效 通常建议对模组恢复出厂设置后再切换,防止模块因为开启热启动等原因使配置不生效。
- 7.6. 节点设备通过 Class C RX2 下行丢包率高怎么办

默认 RX2 下行数据速率为 DR0, TOA 时间较长容易造成数据碰撞, 可提高 RX2 下行数据速率。

7.7. 测试节点设备时,为了保证通信质量,接收信号强度需要在什么范围

建议 RSSI 大于-110, SNR 大于-5

7.8. 如何查看节点设备是否入网成功?

模组可以通过指示灯或者指令(AT+CHECKJOIN)查看;模组可以通过 STAT 引脚或者指令(AT+CHECKJOIN)查看。

7.9. 怎么查看网关与节点之间的信号质量?

可以通过上位机高级功能选择数据传输成功显示功能,数据上传之后会返回成功标识(RSSI, SNR 值),或者使用指令(AT+INFO) 打开此功能。

7.10. 传输距离不理想

天线放置于金属壳内部或地下室,信号会衰减,会导致信号距离近。

存在过多直线通信障碍时,会衰减通信距离。

大雾或雨天会影响信号传输,会导致通信丢包率高。

靠近地面测试,效果不好,一般需高于地面2米。

天线与设备匹配程度较差或天线增益不好导致通信距离近。

7.11. 设备使用损坏

使用之前一定要确认供电电源是否符合推荐供电电源,如超过最大值有可能会烧坏设备 安装使用中,注意设备的防静电,防止对某些高频期间损伤 电源稳定性,尽量减少波动,如波动很大,有可能会造成期间损坏 非必要不使用在过过低温度空间内使用,另外注意水露、腐蚀性气体造成的短路

7.12. 数据传输有干扰

附近有相同频段的其他设备,变换信道或者远离干扰 天线馈线、延长线质量差导致信号传输有误码 底板上面产生较大噪声干扰数据接收 电源设置不合理,不符合规定,造成乱码

8. 免责声明

本文档提供有关本公司 LoRa 系列产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授 予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和/ 或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担 保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

9. 更新历史

固件版本	更新内容	更新时间
V1.0.0	初版	2024-10-23
V1.0.1	指令更新	2025-1-07

可信赖的智慧工业物联网伙伴

天猫旗舰店: https://youren.tmall.com 京东旗舰店: https://youren.jd.com 官 方 网 站: www.usr.cn 技术支持工单: im.usr.cn 战略合作联络: ceo@usr.cn 软件合作联络: console@usr.cn

电话: 4000 255 652

关注有人微信公众号

登录商城快速下单

地址: 山东省济南市历下区茂岭山三号路中欧校友产业大厦 12、13 层有人物联网